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Abstract

various aspects of the photo-anisoiropic elasticity method are systematically analysed and its
poiential for siress analysis of composites 15 examined. Various theories and proposals for inter-
preting the photoelastic response of the birefringent composites have been comprehensively studied
and critically evaluated in order to establish a firm basis for the method. The application potential of
the method is demonstrated and the shortcomings are exposed with a view to improve the method
with further investigations. An exhaustive bibliography, compiled on chronological order, is presented.
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1. Introduction

Ph and Knight! initiated the use of transparent birefringent composites with anisotropic
dastic and optical properties. These orthotropic materials are for model studies using
gansmission photo-elasticity. Recently many investigations have been conducted in
this direction for fabrication of suitable model materials and to interpret their photo-
dlastic response.

The birefringent composites are manufactured using glass fibres embedded in a bire-
fringent resin matrix having a matching refractive index. The elastic and birefringent
properties of the composite materials depend on the properties of the individual
tonstituents.

Pik and Knight! developed a stress-optic law based on a stress proportioning tech-
nmique. Later Sampson® formulated a stress-optic law which hypothesised the concept
of Mohr-circle of birefringence. In this concept three photoelastic constants are involved
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130 K. ABRAHAM JACOB

to photoelastically characterise these new materials. Bert'* applied Bhagavantyy
theory of photoelasticity for an orthotropic crystalline system to develop a general tham:;
of photo-orthotropic elasticity and showed that the congept of Mobr's circle of birefrir.
genca as proposed by Sampson is a direst result of tensorial natore of birefringencs,

Pipes and Rose® have shown, that a single strain optic coefficient coupled with s
four independent material constants are sufficient for prediction of the optical TESponse
of a birefringent anisotropic (orthotropic) material. Similar conclusion has earlier beey
drawn by Netrebko et al®

Dally and Prabhakaran® suggested a method for fabricating transparent birefringent
models and employed a stress-strain model to predict the three fundamental phote-
elastic constants bassd upon the properties of the constituents.

Jan Cernosek? used the theory of unitary system of retarders to vewify the existing
theories of photo-orthotropic elasticity (phemomenological theory and stress-propor-
tioning concept) and discussed the affect of heterogeneity of the material on photoelastic
Tesponss. -

Further investigations have bean conducted to verify the method suggested for inter-
preting the photoelastic response of birefringent composites®® 3% % to predict the optical
characteristics from component propertiesos 26, 27,32 and towards application of the
method for practical problems?® 1% ¥ Some of these investigations are of exploratory
nature and conclusions are suggestive but incomplete in realising the phenomena.

Various theories and proposals for interpreting the photoelastic response of the
birefringent composites have been critically evaluated to establish a firm basis for the
method. .

2. Anisotropic theory

The composite materials are generally anisotropic and the basic unit considered is an
orthotropic lamina generally fabricated out of a matrix unidirectionally reinforced with
rolatively stiff and strong fibres. In a macro-mechanical analysis the theory of elasti-
city for orthotropic materials will hold good.

The basic equations as applied to two-dimensional orthotropic composites are:

(i) Equilibrium equations

%0, | Orgy

ox L dy

da, O7py - 1

oy T Y ®
(i) The strain compatibility equation

d%e,  D%e, _dle, e

E TR T oxdy
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For an orthotropic sheet in which applied stresses are not in general coincident with the
s of orthotropy, the stress-strain relations (Hooke’s law) can be written as

[ Su Sw Sls Ty
e, | = S Ss Se Oy
[ Sis Ses Ses Toy

whete S,, are the elastic compliances.

®

With the help of eqns. (3) and (1) we can reformulate the compatibility equationtinto

the form

o, O%g, 2
Q285 + Suﬁ) axg + Sy Oy“_ + Seo 57 55E — 285 bxg 280 b?c 3y =0. &

By introducing the stress function ® (Airy’s), where

) 20 >0
=gy T EE T T T axay ®

into eqn. (4) we obtain
O * D i d
Sll by + (ZSIZ + SGb) bxz by -+ 22 ai
4 @ ot
= 2Sugrayn T 2 Suamny T ©
For the special case, in which stresses act in directions parallel or perpendicular to the
orthotropic axes (S;q = Sag = 0), eqn. (6) becomes

ot @ LD
Sn 0}74 + (See + 2S12) 6x2 by + Sao bx“ = 0. (7)

In an isotropic solid (Sy; = Sae = 1/2 (Ses + 251,)) eqn. (7) takes the form

ot @ R 3* @

W+26x2<3y2+6x4 =0. ®
The solution of any one of the eqns. (6), (7) or (8), subject to appropriate boundary
conditions, represents a typical plane stress problem.

Tt will be observed by inspection that the solution to the isotropic problem (eqn. (8))
depends on the geometry of the structure, whereas solution to either of the orthotropic
eqns. (6) and (7) depends on both geometry and relation between the elastic constants.

L1. Orthotropic constants

For the case where stresses act in directions parallel or perpendicular to the orthotropic
axes which usually coincide with the parallel and perpendicular to fibre directions in
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uaidicestionally reinforsed composites, the stress-strain relations can be written wiy
respect to the orthotropic co-ordingtes (Fig. 1).

e Sy S 077
€ =[S S O |+]o: ©
€ O 0 Sy i
The compliance terms can be written n terms of enginesring symbols as
1
Su=1f,
Sop = —in . _u
TR E,
1
Sy = ,
1
Ses = ’G; (10)

or we ¢an write

a=2 - v, %
1 El 23 Et

=% T
€ = E Vi E,
= g;- . !
11

Due to symmetry of the stress-strain matrix we have
va By = vy E,

13

XY—Arbitrary co-ordinates
LT—Orthotropic co-ordinates

L—Parallel to fibre orientation

T—Transverse to fibre orientation
Fro. 1. Ortbotropic lamina and co-ordinate system.
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The compatibility eqn. (7) can now be written as
bz . 62 (62 . 62
6-12+K10—12> WZ-Fsz b =0 (13)

or in terms of stresses as

02 92N [
<5—12 + K’%Sdt? '\\U'r + gﬂ) =0 (14)
i 2+ K2 = (Sgs + 2510/, =L _, A
where Ki + K = (Vg 1w)/So = =2~ 2 vy = 15)
5 E,
K2KE = 51/Sas = E‘Tf = B (16)

K, and K; are called orthotropic constants which characterise the orthotropic medium,
The stress distribution in such an orthotropic medium depends on these constants.
It may be noted that the constarts depend on the ratio of elastic modulii.

2.2. Graphic representation of anisotropy

The variation of elastic constants with changes of direction can be represented graphi-
cally by several methods. One method is to plot distances proportional to elastic
modulii in each direction (Fig. 2).

E, = Ejcos?a + 2Gy, sin e cosa + E, sin?q. an
Another way to represent the variation is by employing the direction curve given by the
following relation (Fig. 3):

Bx* + Ax®y2+ t = B (18)

where 4 and B are given by eqns. (15) and (16). At times the coefficients of strain are
plotted with respect to direction to obtain the curve of coefficients of strain (Fig. 4).

r=KSy' 9
where K = scale factor
and §,, = Si; 605%a + 254, 5in 0 60S & + Sppsin®a. (20)
3. Photoelastic response of composites
3.1, Circle of birefringence
Consider the isotropic stress-optic law
Qn

0y =06y = qu,
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Curve 1. Boron-epoxy composite
E; =30 x 10°— kgjem®

E; == 3 x 10°kg/cm?

Gy =1-2 x 10%kgjcm?®

v =025

Curve 2. Glass-epoxy composite
Ep =7 x 10%kg/cm?

E =25 10%kgfem?

Gy = 0-8 X 10°kgfom®

vy = 0-25

FiG. 2. Variation of elastic modulus with direction for typical composites.

where N is fringe order per unit thickness and f, is the stress-optic coefficient. But

o, + - 2
o=yt s v (%5 %) ¢t -
when combined, eqns. (21) and (22) yield

N 9-!—02 2 27," 2 "
(f., f.;) * 77> .
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Carve 1. Boron-eDoxy composite Curve 2. Glass-ePoxy composite
E =30 x 10%kg/cm? Ep =7 x 10°kg/cm?
E; =3 % 105kg/om® Ey =25 x 10%kg/cm® -
¢ =1°2 x 10°kg/cm? Gy = 0-8 X 105kg/cm®
=025 Vig == 0-25
4=2 A4 =3-125
B=01 B =036

Fie. 3. Direction curves for typical composites.

For the anisotropic materials the stress-optic law should have the same form as eqn. (23)
but possess three independent stress-optic coefficients f,, f, and f,,, then

N = C; _ &)2 4 (Z_) 24
& f t? &y
"Here it can be seen that the birefringent components contributed by each component

of plane stress are combined according to a circle of birefringence concept. The compo-
meats of birefringence are defined as

@23



136

K. ABRAHAM JACOB

Curve 1. Boron-epoxy composite Curve 2. Glass-epoxy composite
S =033 % 19"%em?fkg S == 1-4 - 1078 cm¥/kg
Sga = 33 x 10-%cm?fkg =4 X 10~ cm?/kg
Ses =38-3 X 19 cml/kg Ses = 12°5 % 10~°cm?/kg
Siz = —0-083 x 19~ cm?/kg Spe = — 0-35 x 10 om¥/kg

Fie. 4. Curves of coefficients of strain for typical composites.

Then the circle of birefringence can be developed as (Fig. 5)
N2 = (N, = N)* + 2N,,)? (8

Nyp = et 4 N2

N, — N, = Ncos 20

%=%mm. @
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Ny i

}"‘Nz""’_' 26 Nxy

z

Nye = (N + N2 = Nj2
N, — Ny, = N cos 20"
Ny

N
N,yy= 7 sin 26"

| .N'I
fie. 5. Circle of birefringence,

Now, from the isochromatic fringe order and isolinic parameter we can obtain the
following relationships :

e _ Ty = Noos20 28
%% @)
. = N%’ sin 20", 29)

3.2. Strain-optic law

The classical strain-optic law for isotropic materials can be expressed as
e — ey = Nf, (30}
The principal strains, expressed in terms of arbitrary co-ordinate system, x, y, are

_ & + Cy /e‘ — & 2 Cay 2
e fa [ {(559) + (3)) b
Honee ¢, — ez = v{le. ~ &)* + ()"} (32
ie. Ns= 7 \/{(e - e,)% + e,,%} (33)

or £ - e,> (e,,> (ED)

The stress-strain relationships for an anisotropic material, subjected to a state of plane
stress is given, by eqn. (3). When the medium possesses a plane of elastic symmetry S;q
and Sy the shear coupling compliance terms vanish, then
(e, — 2% = [(S1 — Sip) 0, — (Saz — Sia)0,]2 (35)
(ea)* = (Sea 7)? (36)
when combined, equs. (34), (35) and (36) yield the strain-optic law

s _ [ (S —~ S:g) _ (See — Sw) 2 §9_6 T 2_ 3
NE = L_‘_fc_‘ a, _———fg a',,] + J;f. .,,J € 7
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Hence there exist definite relationships between. the stress optic coefficients and the straj
optic coefficients which can be obtained by comparing coefficients of stress com; Fain-
from eqns. (37) and (24). poneat:

Y S
A e AR

R A
fo= (S22 — S But.
_Jo
Fwme = Bef, @

The compliance texrms S, can be expressed in terms ol enginecring properties of the
material by eqn. (10). Then :

B= T+ _Vn
— E’
b=,
Bs = Gu (39

4, Tnterpretation of photoelastic data

The photoelastic data will provide a relation between normal stresses [eqns, (28) and

29].
- K a, Nf, cos 20 = Nf Py cos 20 0

Koty = 5 fun 50 28 =35 £, fy sin 20 @

where ¢ is the optical isoclinic and
_ﬂz_E:1+th__B1 T

K =52="3F Rl P 2
* o B L+, T+ v,
K=B-Carw=t @
B
For isotropic nmt.m'lals the strain fringe value £, and stress fringe value f, ate related
E
fe= mf o
Similar relations for orthotropic cases are (43
=0
fo=tfi= mf.
fi=fi= 1F v, + Va fo
(44

f.1=ﬁt = Gufa

In effect, one can appreciate the fact that the isochromatics in an orthotropit

medium represent the contours of maximum shear strain and the isoclinics Tepreses
the contours of equal principal strain angles,
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§.1. Lochromatics and isoclinics

An orthotropic square plate model was fabricated by embedding transpdrent glass fibres
(E-glass) unidirectionally in an epoxy matrix of matching refractive index (Araldite
CY 230 + Hardner HY 951 + Dibutyl phthalate, 100 + 10 + [0). The fibre volume
fraction was estimated by separating the fibres by burning off the resin at an elevated
remperature (around 500° C) in a furnace. The fibre volume fraction in this case was
5.28%.

The orthotropic constants were determined from the elastic constants evaluated using

tensile specimens.  These constants for the two cases studied are as follows :

Fibres vertical K2 =225
2 =055

Fibres horizontal K2 = 1-32
Kz =0-487.
The modsls were loaded under partial edge compression (in plane) and the corresponding
isochromatic patterns are presented in Fig. 6. Typical isoclinic patterns are presented
in Fig. 7.
The quality of the fringes improves when the fibres are well dispersed in the matrix

and entrapped air bubbles are not present. For clear fringss and transparency of
the model, the refractive indices of both the matrix and the fibres should be the same.

1
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FiG, 6. Typical 1sochromatic patterns (light field) for an orthotropic square plate subjected to in~plane
loading (4. parallel to fibre direction, 5. Normal to fibre direction).
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FiG. 7. Typical isoclinic pattern for a square plate subjected to in-plane loading (4. 0%, b. 15,
e 30°, d 459).

The residual birefringence introduced due to shrinkage of resin dusing curing is to be
socounted in analysing the fringe data. The zero order fringes indicate sither zero
stress region or points where isotropic strains (not isotropic stress) exist.

4.2. Separation of stresses

From the photoslastic data one obtains a linear relationship between the normal
stresses and shear stress at each point. The separate values of normal stresses can be
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saaied by ditferent methods.. The differential equations of equilibrium can be used
sor this purpose.  The derivative of shear stress can be approximated as (Fig. 8)

07y _ Tayp — Taya
By = - N {45)
qnd then
sy ) .
6, =050 — f a;y” dx. 46)
o

The numerical procedure is similar to that used in isotropic case. However, it may be

oted that in general g, , = 0 but rather
Gypo = Py C08 20, “7
where Py = tangent stress
and 6, = physical isoclinic.
After obtaining o, ,
g, = }:" (o, — f. Ncas 260). (48)
This constitutes complete solution of the problem.
The equation of equilibrium for an element in cylindrical co-ordinates is

[ -
9 % X 40\

8 Typical integration grid for shear difference method,
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Assuming no body forces, the stress-optic law is

N_os % ,

4 % f 5
By substituting (o, — 64) obtained from eqn. (49), eqn. (50) becomes

N 1 1 1 ( 9o,

7 _G'(ﬁ 7 +fg 7 5 ) {sh

Equation (51) can be used in its finite difference form to evaluate o, along a radig
line.

Another method is by employing the numerical solution of orthotropic compatibilisy
equation expressed in terms of stresses
)2 o2 !
Fye +K§6—y—2>5=0 53
where S =0, + Ko, fix)
and K; and K, are the orthotropic constants. Equation (52) cam be put in finite
difference form using the standard procedure. The recurring relation for S aiam
interior mesh point 0 (i,j) becomes

Sys = Sen, s+ Seays + (S, 4 Sy, -0K320 + K. (54

Along the fres boundaries, the photoelastic data give the value of the prineips
stresses.  On loaded boundaries, one of the principal stresses is known; hence, fron
the photoelastic data the stress components can be calculated. After obtainisg
boundary values, eqn. (56) can be used to caleulate the values of S in the *interior”
with the help of an iteration programme.

Then, the values of g, and o, can be calculated knowing the value of S and the
vphotoelastic data.

_ S +Nf,cos26

Chls s S e
and o, =8 — Ko, 56
where K = f/f,. ‘
The shear stress is given by

n,:‘Nﬁ'gnza. 6n

2

5. Prediction of birefringence of composites

The optical response in terms of fringe order due to each constituent is algebraicaly
summed up to give the total retardation as

N=N,+N, o
{where f and m represent fibre and matrix respectively).
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7ok algebraic summing neglects any influence of rotation of principal stresses as the
it propagates through the heterogeneous composite. In the simplest case the photo-
nstic constants in orthotropic case can ba represented by

ok o
I =JJ\7’ fi= '}{7:
2ry . B
fu=0 (59)

Deining in this mannes, the photoelastic counstants f,, f, and Jue are analogous to the
Jdaiic constants £, E, and G, and for a unidirectionally-reinforced composite. The
ux of mixtures formulas for computg elastic constants can be analogously derived
s the photoslastic constarts. Then

Vi EnlED) VeSS
A N A o] (©0)
Fo = LM 1 fn + V) 1)
fu =il Vit + Vafi)- 62)

The above relations can be modified by considering mora realistic (also more complex)
stress-strain models?® 34,

& The isoclinic paradox

The anisotropic elasticity theory says that the principal stresses and strains are in general
aw non-coincident except at certain points of symmetry im an anisotropic elastic
media. This deviation can be obtained exactly in theory. But in photo-anisotropic
sasticity, the problem involved is in the interpretation of the optical isoclinic and in
drmining the exact principal stress or strain directions from the measured parameter.
The available literature in this regard is suggestive but a unique conclusion in this
mgard is absent.

Pih and Knight' observed that the optical isoclinic angle differed considerably from
e physical isoclinic angle and Szmpson® suggested that the optical isoclinic angle is
ase half of the angle between the fibre direction and the direction of the principal compo-
=t of birsfringence as determined by Mohr-circle. Prabhakaran®? investigated the
soclinics in orthotropic photoelastic models and suggested that they can be interpreted
by drcle of birefringence concept and as an approximation the principal strain angles
s oloser compared to the principal stress angles. Jan Cernosek® showed that the
ffetogencous composite material is a simple linear retarder and no rotation is present.
s suggests that the stress-optical constant and parameter of optical isoclinic can be
usurately predicted even if the residual birefringence is present in the unloaded speci-
mn. Pipes and Rose® hypothesised the isoclinic angle to be equal to the principal
sin direction of equivalent homogeneous anisotropic medium and expressed the
bubt that the actual heterogeneity of the materials might be expected to alter the
fsics of the isoclinic parameter.
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Prabhakaran® employed a stress strain model to determine the principat directiong
in the constituents. e observed that the principal strain dircctions for the COMPOsites
are significantly different from the principal stress directions. Also the principal dim::
tions for the constituents are different from each other and are both different from the
principal stress or strain directions for the composite. He also observed that the
pringipal strain directions for the matrix are close to that of the composite as a whol
However, no proper explanation is given to validate these observations. The non—.
coincidence of principal dirsctions in constituents in a way suggests lack of compat-
bility and inadequacy of the stress-strain model to predict the gross behaviour.

6.1. Correction for isoclinic angle

The basic principle of isotropic photoelasticity theory is that plane-polarized light veetes
is resolved into two components which ate parallel to principal stress or strain aws
at each point in a birefringent mediym. Extinction Iringes called isoclinics are pro-
duced when the principal axes are oriented parallel or perpendicular to the polarizer
The strain optic law suggests that the light vector is resolved into components which are
parallel to the principal strain axes. Unlike isotropic materials, the anisotropy of thes
materials yield non-coincident principal stress and strain directions. The actual hetero-
geveity of the material might be expected to alter the physics of the isoclinic paramete:. :
The principal strain direction is given by

e _ 27y E;

tan 20, = =
&G — € g 2G, (1 + vy

G

This is the plane on which there is no shear strain but not necessarily zerc shear stress.
The direction of the planes of principal siress (i.e., planes on which shear stress but
not necessarily shear strain is zero) is then given by
27,
tan 260, = ﬁ . (o4
The angles §, and 6, are angles subtended between the planc which has the fibre axs
as normal and the plane of principal strain or principal stress respectively.

For isotropic materials, £ = 2G (1 + v) and then eqns. (65) and (66) are identicst
or the planes of principal stress and strain are coincident.

From eqns. (65) and (66) we may write for the plane case in which o, = 0, that

tan 20,

- : - 6
T Toa { vy Sl €

which is an equation describing the difference between the directions of the planes of
principal stress and strain in terms of orthotropic elastic constants. Obviously for ar
isotropic material (1 = 1) the isoclinics of stress and strain are coincident.
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Using eqn. (67) we can obtain the prineipal siress angles from principal strain direc-
tion.

b= 5 tan™

Now in eqns. (28) and (29) the optical isoclinic parameter may be replaced by the principal
aress angles.

“tan 20
o = 5 tan™t (En:—> . 67)

The deviation of 0, from 6’ and its dependence on 1 is demonstrated in Fig. 9.

2
ytant (2220). (66)

Using the above concept, the shear stresses and a relation between normal stresses
are obtained along different sections for the orthotropic square plate model.

1y = CoFysin 20, (68)
oy — Cyo, = NF,cos 26, (69)
whore Gy = Fy/2F), Cy = F,JF,
I
F; = 7

Oy = 0" — ng = %tan‘l (ta_u[_lﬂ)

For jsotropic materials, G = Ef2 (1 + v) and hence 1 = 1 and 0, = &' (observed),

50 1

&0 4

204

10+

o M= — -

0 20 30 40 50

5. 9. Deviation of isoclinic angle (#”) from principal stress angle and its dependence on A.
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The stress components o, and g, are computed along the horizontal axis for the
yo cases of loading (parallel and perpendicular to fibres). The results are présentsd
1 Fig. 10.

Scope for further research

‘or fruitful application of the photo-anisotropic elasticity for stress analysis of compo-
tes, certain fundamental difficulties are to be resolved. Further investigations are
squired to characterise the birefringent composites, both mechanically and optically
y minimum experimental measurements, but with high reliability and conﬁdence.,

3] Y
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i
—f 2]atf—
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”mq, l So=23a L
e L L=10¢m
\© L a=Lfi0
N
0- o —
S ’/47:’/0
-‘] . ;
0 05 10
2xfu -

==+ -—  Fibres vertical {K§ = 2-05, K2 =0-55)
=~ ~ ~ FPibres horizontal (K} = 1-82, KZ = 0-487)

Fio. 10. Distribution of ¢, and ¢, along the axis OX for the orthotropic square plates subjscted 0
partial edge compression.
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Most of the advanced composite materials (graphite-epoxy, boron-epoxy, boron-
aluminium, etc.) are neither birefringent nor transparent. This necessitates develop-
ment of suitable model 1raterials and techniques to represent these materials.

The available theories are to be consolidated and improved to uniquely characterise
and realise the photoelastic response of the birefringent composites. (These have been
partly accomplished in this paper.)

It is also necessary to investigate the lamination effects (coupling effects) in addition
to the macroscopic anisotropic effects (properties depending on orientation). This
requires a photoelastic model which can be stress-frozen. Some exploratory investi-
gations in this direction are available in literature.

In effect the broad class of problems to be tackled are :

{i) Development of suitable transparent birefringent model material.

(i) Development of proper calibration techniques for mechanical and optical
characterisation of birefringent composites.

(iiiy Development of suitable (reliable) method for interpretation of experimental data.

(iv) Definite understanding of the micro-mechanical phenomena and its contribution
to macroscopic optical and mechanical properties.

8. Discussion and cenclusion

1. The isochromatics and isoclinics [rom an anisotropic birefringent medium can be
mterpreted to obtain the strains inducing them.

2. The deformation and the resulting strain is the fundamental cause for change in
Iattice orientation and spacing aud hence the resulting optical phenomena can be
interpreted. based on a strain-optic rule.

3. Prediction of optical and mechanical properties based on stress proportioning and
stress-strain models are useful in designing birefringent anisotropic models and
experiments. However, influence of variations within layers, between layers (inter-
faces) and frequency of composite components are to be accounted for, for more
realistic prediction.

4 The coincidence of the circle of birefringence concept and the isotropic strain-optic
coefficient suggests a uniqueness in the theory of photo-anisotropic elasticity. This
will be beneficial from application point of view.

5. The whole field optical patterns provide an immediate comparison and verification,
for amisotropic elasticity theory; and it is possible to evaluate the quantitative
values of stress components from the optical data.

118c.—4
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