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Abstract 

The problem of hMD two-dimensional flow past an iafinite porous plate with constant suction moving 
with arbitrary time dependent velocity, under time dependent pressure gradient when initial distri- 
bution of velocity is an exponential form is studied. This ;roblem generalises aeveral earlier works 
for the case when the motion has started frem rest with uniform pressure gradient as a result of the 
plate movement in various aanicular ways. 

Keg words : Unsteady MHD flow, prwsure sradient, puroua plate, arbitrary t i e  dependent iclocitr . 

The incompressibie laminar viscous fluid flow between two stationary parallel iiat 
plates with an arbitrary time varying pressure gradient and with an arbitrary initial 
distribution of velocity has been studied by Hepworth and Rice1. The same problem 
is studied by Prakash' under the same condition, but with the difference that the flow 
is in between two stationary coaxial circular cylinders. The problem of viscous 
incon~pressible flow past an  infinite plate moving parallel to itself with an arbitrary 

dependent velocity when the pressure is uniform and the initial distribution of 
velocity is an exponential form has been discussed by Prakash3. Srivastava and Lal' 
extended this problem in case of MHD flow. The present paper is concerned with 
the Study of problem of incompressible laminar viscous electrically conducting fluid 
flow past a n  infinite flat porous plate moving parallel to itself with an  arbitrary time 
dependent velocity with uniform suction at the plate, under constant pressure gradient, 
when the initial distribution of velocity is an exponential form. 

2. Formulation of the problem and solution 

Consider an unsteady laminar viscous MHD flow past an  infinite porous flat insulated 
Plate moving parallel to itself with arbitrary time depndent velocity with unifornl 
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suction V(p' > 0) under'tin~e dependent pressure gradient, with initial distribution 
velocity being in exponential form. We take x and y axes along 2,nd normal to the 
*late and assume a uniform magnetic field H, acting along ?-axis. Then the soverning 
equation of motion for this problem i s  

where = ? h; H:, = constant. v is the kinematic viscosity and p is the pressure, 
P 

The initial and boundary conditions are 

t = O ; u = A e x p ( - B y ) f o r  y > O  (2.2) 

t > O :  u = g ( l )  for y = 0 (2.3) 

t > O : u = O  as !. + w (2.1) 

Here A, B are non-ncgdtiva constants and 4 ( t )  is bounded continuouv or piecewise 
continuous arb~trary function of .I. 

Now if we assume - %' = f ( t ) ,  (2.1) reduces to 
2.K 

We solve (2.1) with initial and boundary conditions (2.2)-(2.4), with Laplare trans. 
Form techniqms and the solution, after assuming pressure gradient constant, i.e., 

where C is constant, is given by 
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C 
t - ( I  - e-"9 t Aexp { - By + - FBI - nit:, (1. > 0 )  (2.6) Pm 

The steady state solution is obtained by taking limit of cqn. (2.6)  as t + oa. 

3. Discussion 

We find that so l~~ t ion  (2.8) is valid for both y ,; 0. However, this solution is derived 
from solution ( 2 . 6 )  which is only valid for y s 0. This is due io discon~inuity in the 
Bow at y = 0 since the start of motion. 

From the solution ( 2 . 6 )  we note that velocity field dcpcnds on the initial distribution 
OF velocity, motion of plate and on the pressure gradient, whereas the steniy state solu- 
tion does not depend on  the initial distribution o l  velocity but on plate motion and 
pressure gradient. To see the effect of suction and ma.gnetic field on the velocity 
profile we take the plate to be uniformly accelerated, i.e.. g ( t )  = at .  B y  giving the 
values to constants. A, B. C, and a, as unity (= 1) and tzkiqg p = I (e.g.,  water) the 
solution for velocity profile. eqns. ( 2 . 6 )  and (2.7) become 



+ e x p ( - q + t - V , t - m t )  ( q > O )  

2 1 s  t (v = 0) 

where 

We plot the velocity profiles using eqns. (3.1) and (3.2). Figure 1 (a) and (bj show 
the velocity profiles for t F 0.5 and f = I respectively. 

We find from the figures that v is just f as given by eqn. (3.2) for q = 0. And for 
increasing value of q the velocity decreases and for large value of 11, zr attains a 
steady value determined by the magnetic field parametar m. For higher value of time 
i, the steady value is attained quickly compared with lower Value of time t. With 
increasing value of suction the value of u decreases before it attains steady state value. 
The effect of magnetic field is more prominent; it decreases the velocity field and the 
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decrease in the value of the velocity at a point is more for higher magnetic field for the 

0 difference in the value of lnap~lelic field strength. This is also true for higher 
value of time t .  

J. Special cases 

(a) Solution For ordinary hydrodynamic flow (m = 0 )  : 

If 

m = Y ~ : H ;  = 0, 
P 

then eqn. (2.6) becomes 

Ct 
- A exp : - B). + vR9 - Vw + - . (J > 0) .  

P (4.1) 

In the absence of pressure gradient this corresponds to the solution for hydrodynamic 
Row given by Srivastav3. 

(b) An infinite porous flat plate moving in Don-conducting fluid with time dependent 
*locity U ( t )  with uniform suction V on the fluid at rest. 

The solution for this problem is obtamed by putting g ( t )  = U(t ) ,  m = 0, A = 0, 
p =  0, 

0 

(4.2) 
This corresponds to  the expression given by Hasimoto6, 
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(c )  An infinite porous flat plate oscillating (linear harmonic) parallel to itself Nith 
velocity Ucos nt with uniform suction V in the fluid at rest. 

The solution for this problem for large times is obtained by putting g ( t )  = ucos nt 
A = O , m = O , p = O .  

with q = y/l/rn. (4.31 

This solution can be compared to the solution obtained by Srivastava and LalF. namely. 

whore 

(d) Stokes first problem 

The classical Stokes first problem can be obtained by putting, 8 ( t )  = U, A = 0, 
m = 0. V = 0, and p = 0. 

which i s  the same as SchlictchingV solution (Page 72, eqn. 5 .  22). 

(e)  Stokes second problem 

Solution for Stokes second problem can be obtained with g ( t )  = U cos nt, A = 0. 
m = 0, V = 0, p = 0. for large times, we have from (3.4), 

which is equivalent to Schlicltingfi solution, (Page 75, eqn. 5.26) 

5. Conclusions 

( I )  There 1s dixontinuity in the flow at y = 0, since the start of motion 

(2) The velocity decreases with increase in the magnetic field strength and this decreag 
is more with higher value of time i. 

(3) The increase in the value of suction decreases the transient velocity prose. 
(4) The solution obtained is generalisation of several earlier works such as Stoka 

problems, 
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