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 Abstract
In the present paper we have given the solution of the differential equation

X4 f(x) =0
of the general free oscillations where,

gy @y » o =1y
= wl % F, 10 Fas 2p3 e
fx) = wix, ql:bxsbas ) --=b¢;c
by applying the limear orthogonal polynomial approxXimation.” The results obtained are of general
dharacter and include as particular cases many of the results given earlier by Garde and Saxena and
Kushwaha.
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L Introduction

_In 1959, by the application of Tchebicheff polynomial approximation to sin 8 in the
mterval (~ 4, 4), Denmann® obfained an amplitude dependent approximation to the
frequency of the simple pendulum whose amplitude of motion is 4. Later, in 1964,
Denmann and Howard?, Denmann and Liu® have applied uitraspherical polynomials
to the same problem. Gardet in 1965, applied Gegenbauer polynemials to some forced
oscillation problem and in 1967, Jacobi polynomials to obtain an approximate solu-
ton depending on the amplitude of the nonlinear oscillations defined by the differen-

til equation

¥+ ax + bx?* =0,
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In 1970, Saxena and Kushwaha in two of their joint papers attempted Jagl; s
nomials to obtain the amplitude dependent linear approximate solution MPV;
differential equations

¥4 ax 4+ bx* =0
and
%+ wiam Fi(y; diex) =0
We have attempted in this paper a set of gemeral orthogonal polynomials {4, ™)} o

give an amplitude dependent linear approximate solution of a general differentiy)
equation

~

Ay Ay o, @, \
X+ wix™F B ”‘cx")ﬁ()
U N

where » and s are positive integers and

a, g, .5 8,
of by by, o a by cx‘]

is the generalised hypergeometric function? (p. 73).

The initial conditions of motion are x = A, X = 0 when ¢ = 0, A being the ampl-
tude of the motion under which the solution of the preposed problem will be obtatued.

The main result of the paper is a generalisation of the results given by Garde®
Saxena and Kushwaha® ®. The results obtained are believed to be mew.

2. Orthogonal polynomials and linear approximation

Let ¢, (x) be 2 polynomial of degree precisely n and {¢, (x)] forms a set of orthogonal
polynomials in the interval (g, ) with respect to the weight function w (x) >0, thez

W ) da D d =0, m#
= K,(ay)# 0, m=n. e

It can be easily seen that the set of polynomials {4, (x/4)} arc orthogonal in the interval
(ad, bA) with weight function w (x/A).

Let 12 be the class of functions f for which

£ 72 wdx < oo : @
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and let {4, (x)} be an orthonormal system of polynomials which belong to L2. Thea
he system is closed and for every

®
feli S ai= [ fwdx and 3 ag, @2
» e
converges in mean to f
In reference to the known solution of the differential equation

%+ mx = n. 2.3)
We obtain an approximate solution of the problem

2+f(x)=0

by truncating the series (2.2) of f(x) after second term. Thus the desired approxi-
mation of f (x) in this problem is given by

el = ado (3) + 2 (). @4

3. Solution of the main problem
In this section we have solved the differential equation
E+f(x)=0 3.
where
760 = g [ e ol e
and
[f]e = — K¥ + K¥x,
where
2 N d
—~ K* = a, + €e, K*-—-—a,z,
Awr [
- T wE . [ P 7 A
ay 7 j X7 w (%) g F bpbg,-..-bq’bquﬁ!(x)dx’

2

o

i=0, [ and ¢y = 1, ¢, = ¢ + dx, K, are defined by the relation (2.0).

e integrals in g; exist since the series

F[glsga,-- .ap.cx{l
10 Doy .. 0 B
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is locally uniformly convergent for p< ¢ if 0 < x < M, where M is arbitrary and

p=g+1if |ex*] < 1. Also, w(x) >0 and each of the polynomials ¢, 4 for

exist and r is a positive integer. On replacing f(x) by its approximation [;‘( B

(3.1), the equation transforms into J6Ls in
4+ KHx =K

which has the solution
KT K*
Xy = [A — g | 908 K*t 4 o

under the initial conditions x = 4, ¥ =0 when 7 = 0. This solution is therefore ag
approximate solution of the problem (3.1) under these conditions.

Qbviousty it has the approximate period

in
T=Tu-
Purticilar cases: (i)' If we take ¢, (x) to be the Jacobi polynomials [ref. 7, p. 254: rel. I,
p. 58], and use the integral [ref. 11, p. 466], and {ref. 10, p. 1], Py®-F (9 =1, Pt
=14 + B+ 2D x + (a— )2 then the approximate solution of the nonlinexr
differential squation

F4+f(x) =0

where

) Gt
flxy = wixr Fol e SR ext
SOy = WX b by

is given by

. _ T F—-—wd COAFINTT B-ayd [ G2
Xy = LA “GIFED (1 + T)J cos M + (iz”Jr-’/’fE-FWZ_) K[ + 1}2)

where

= é (@ A+ s TP +r+si+ DT+ f+4

22 =i A A
4
=0 T (b); J! IrB+DrB+a+r+g5+3)
=i ~
L —r—g.,0+2

and
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»
© T (&) ¢! A% . : L
/*-32[1’—1‘;?’ A A G A
a—f 4. 2 - - -
’ = _n(bi)i.]! TB+DT @+ B+ +si+2)
=1

—_—F " 1
R TG L)

—B-r—g
The series for 2% and A*2 are convergentfor p < g and for p =g + 1 if jed [ < 1.
(i) The approximate solutions of
E+wixFila:biex) =0
given by Saxena and Kushwaha® (p. 295) and that of
X4+ wEx —wiext=0

by Garde® (p. 112, 22) are seen to be sasy consequences of our main result.
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