J Indian Inst Sci., 65 (B), Feb 1984, pp 39-41 © Indian Institute of Science, Printed in India

Short Communication

An alternative definition of local connectedness in bitopological spaces

S S. LAKSHMI •

The Institute of Mathematical Sciences, MATSCIENCE, Madras 600 113, India

Received on September 14, 1983, Revised on February 6, 1984

Abstract

In this note we give an alternative definition of local connectedness in a bitopological space and derive some properties of a locally connected bitopological space.

Key words: Bitopological space, connectedness, component, local connectedness

1. Introduction

The notion of connectedness in a bitopological space is due to $Pervin^1$ The concept of local connectedness in a htopological space has been introduced by Dasgupta and Lahur³ They have also derived some of the basic properties of such a space. However, according to their definition, in a locally connected bitopological space, the two topological space. Therefore, in this note we have made an attempt to give an alternative definition of local connectedness in bitopological space. For a set of basic definitions and notations we refer the reader to Kelly³ and Pervin^{1,4}.

2. Alternative definition of local connectedness

In this section, we give an alternative definition of local connectedness in a bitopological space and derive some of the properties of a locally connected space

DEFINITION 2.1 Let (X, P, Q) be a bitopological space. If U is P-open and V is Q-open, then $U \cap V$ is said to be partially open in (X, P, Q).

DEFINITION 2.2. A bitopological space (X, P, Q) is called *locally connected at a point* $x \in X$ if and only if for every pair of P-open set U and Q-open set V each containing x, there

* Present address Department of Mathematical Sciences, Federal University of Technology, P.M B 2240, Abeokuta, Ogun State, Nigeria

S.S. LAKSHMI

exist a P-open set C and Q-open set D such that $C \cap D$ is connected and $x \in C \cap D \subseteq U \cap V$ (X, P, Q) is called *locally connected* if and only if it is locally connected at each point of X

Remarks 21

- Note that when P = Q, by taking V = U and D = C, the above definition reduces to the definition of local connectedness at a point x in a topological space (X, P)
- (ii) Note that we have not assumed that $C \subseteq U$ and $D \subseteq V$
- (iii) Local connectedness for a bitopological space is not equivalent to the local connectedness of the individual topologies as shown by the following examples

Example 21 Let (X, P, Q) be a bitopological space, where

$$X = \{ 1,2,3, .., n, .. \},$$

$$P = \{ \phi, X, \{ 1,3,4, ..\}, \{ 1,4,5, ..\}, .., \{ 1,n,n+1, ... \} \text{ and }$$

$$Q^* = \{ \phi, X, \{ 2 \}, \{ 3 \}, ... \{ n \}, ... \} \text{ is a subbase for } Q$$

Note that the topological space (X, P) and (X, Q) are locally connected whereas the space (X, P, Q) is not locally connected at 1

Example 2.2 Let

$$X = \{ (0,y) \mid -1 \le y \le 1 \} \cup \{ (x, \sin 1/x) \mid x > 0 \}$$

Let P be the topology on X, obtained by the restriction of the usual topology on R^2 Let $Q = \{\phi, X\}$ be the indiscrete topology on X. Then we note that the bitopological space (X, P, Q) is locally connected whereas the topological space (X, P) is not locally connected

3. Basic properties

In this section, we derive some basic properties of a locally-connected bitopological space

Theorem 3.1 A bitopological space (X, P, Q) is locally connected if and only if the components of partially open sets can be expressed as a union of connected partially open sets

Proof We first assume that the biopological space (X, P, Q) is locally connected Let K be a component of a nonempty partially open set $U \cap V$ if $x \in K$, then there exist a connected partially open set $C \cap D_x$ such that $x \in C \cap D_x \subseteq U \cap V$ Since K is a component of $U \cap V$, $x \in C_x \cap D_x \subseteq K$ Varying x over K we get $K = \bigcup_v (C_x \cap D_x)$

For the converse, let $x \in U \cap V$, a partially open set Then there is component K of $U \cap V$ such that $x \in K \subseteq U \cap V$ By assumption, there is a connected partially open set $C \cap D$ such that $x \in C \cap D \subseteq K$ This proves that the bitopological space (X, P, Q) is locally connected

Theorem 3.2 Let (X, P, Q) and (X^*, P^*, Q^*) be two bitopological spaces and $f(X, P, Q) \rightarrow (X^*, P^*, Q^*)$ be a continuous surjective mapping. Further, let t be partially open, that is, f carries partially open sets in X to partially open sets in X * If (X, P, Q) is locally connected, then (X^*, P^*, Q^*) is also locally connected.

Proof. Let $v \in X^*$ and let $U \cap V$ be a partially open set containing $y \text{ in } (X^*, P^*, Q^*)$ Since f is continuous, $f^{-1}(U \cap Y) = f^{-1}(U) \cap f^{-1}(V)$ is a partially open set in X Since f is onto, there exists an $x \in X$ such that f(x) = v. Since the bitopological space (X, P, Q) is locally connected and $f^{-1}(U) \cap f^{-1}(V)$ is a partially open set containing x, there exists a connected partially open set $C \cap D$ in X such that $x \in C \cap D \subseteq f^{-1}(u) \cap f^{-1}(v)$. Since f is continuous, $f(C \cap D)$ is connected in (X^*, P^*, Q^*) . Also, since f is partially open in $(f \cap C)$ is partially open the fact that

 $y = f(x) \epsilon f(C \cap D) \subseteq U \cap V$

We omit the proof of the following theorem, which is straightforward

Theorem 3.3 Let (X_i, P_i, Q_i) be a countable collection of bitopological spaces and let (X,P,Q) be the product space, where (X,P) is the product of the collection (X_i, P_i) and (X,Q) is the product of the collection (X,Q_i) . Further, assume that each projection is partially open Then the bitopological space (X,P,Q) is locally connected for all except a finite number of 1 and the bitopological space (X,P,Q) is locally connected for each 1.

References

1	Pervin, W J	Connectedness in bitopological spaces, Indagationes Math , 1967, 29, 369-372
2	Dasgupta, H and Lahiri, B K	Local connectedness in bitopological spaces, J. Indian Inst. Sci., 1983, 64(B), 37-40
3	KELLEY, J C	Bitopological spaces, Proc London Math Soc., (3), 1963, 13, 71-89
4	PERVIN, W J	Foundations of general topology, Academic Press, New York, 1964