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Abstract

[nthis paper the ‘local potential method” as introduced by Prigogine and Glansdorff and applied to hydrodynamic
siability problems by Schechter and Hi: Iblau and the ‘exact numerical procedure’ used by Harris and Reid and

athers have been applied to determine the stability criteria of 2 hot layer of fluid with mean temperature changing ata
constant rate, which had already been determined by Krishnamurthi. While solving by the two methods and

comparing the results with the known results it is found that unless sufficient representation for the eigenfunctions is
considered the ‘local potential method’ does not give good approximation and unless the initial guess is quite close
to the actual result the ‘exact numerical procedure’ involves long processes. It is found that two methods can be

suitably combined to give a useful procedure.

hi of stabilities.
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L. Introduction

The concept of local potential had been introduced by Prigogine and Glansdorff ' and was
applied to hydrodynamic stability problems by Schechter and Himmelblau® and Platten” ™.
The method gives approximate solution by constructing the local potential. The exact
numerical procedure involves the transformation of the two-point boundary value problems
into an initial value problem and was used by Harris and Reid®, Chock and Schechter® and
Sastry and Rao'®. Vanderborck and Platten'! had investigated the usefulness of the two
methods and in this paper we have investigated considering the case: the hydrodynamic
stability of a horizontal layer of fluid with mean temperature changing at a constant rate.
The problem had been solved by Krishnamurthi® and thus the comparison of the results by
the two methods with the well-known results helps us in arriving at some conclusions

presented in the last section.
7t
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2. Basic equations and boundary conditions

A coordinate system oxyx.x; is chosen having ox; vertically upwards and oxy, oxy in the
horizontal plane. The fluid is assumed to be infinite in horizontal extent and confined
between two rigid, perfectly conducting boundaries x3 = 0 and x3 = d. The lower and upper
plates are maintained at constant difference of temperatures A 772> 0. It is assumed that the
temperature in the fluid is changing at a constant rate. The basicequations, with Boussineyg
approximations are 812,
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where w, (1= 1,2,3), v, p p, & K.and aare the components of the velocity, kinematic viscocity,
the density, the pressure, the acceleration due to gravity, thermal diffusivity and the

coefficient of volume expansion respectively. K being the unit vector in the direction of ox;
axis.

The boundary conditions: Since the boundaries are rigid and perfectly thermally coz-
ducting we have

w =40 for x; =0d ®
and

~
!

=Thforxs=0and T=To-AT for x; =d attimer=0 (6

3. Linearized equations and normal mode analysis

In the stationary state, when u, = 0 (i = 1,2,3) and T (x3,7), the mean temperature i
changing at a uniform rate ¢,; we find from (2):

- 0 A hd
T(Xs,!)=Qvt+%xg-(—f—i—f&)xs'i-ﬂ M
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Assuming p and p to be the values of pressure and density in the undisturbed state and
assuming t, p + 8P, + 8p and T(xs, 1) -+ 6 to be the velocity components, pressure, density
and temperature in the disturbed state where w,, 8p, 8p and 8 are small in magnitudes, we
have after linearization, introduction of non-dimensional variables denoted by dashes

K,
w=del (0= 1,23), w=—ul (i=123)

d
a = , _ Ky KAT
1=t 0= (AT, & =g o On = el
following equations:
au a(8p) S,
B ¢ +Viy
a ow, | ROKH VT ®
Pr %g =V 4+ u + —%’* (1~2x3)us ©)
=0 (10)
ga ATq?

{after dropping the dashes). Here R = =K is the Rayleigh number and Pr = v/ K,
is the Prandtl number. ¥ &

Supposing

" .
s, s, 11, 5, 8) = [ W(x;),—;—ZDW(xs),%DW(m), P(x3), © (x3)]

exp (iKxi + imx2) an
when the principle of exchange of stabilities is valid and substituting (11} into (8) and (8), we
have, after eliminating P (x3),

(D" -8y W= Rd 0 (12

(D" - )0 = -W~0Qn/2(1~2x) W (13)

and the boundary conditions from (5) and (6), as
W=DW==0atx; =01 (1%

d

where p = -2
dx;
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4. Solution
4.1 Local potential method

Considering X°® (which represents W or 8, the actual solution) and X = X° +6X,a
variation satisfying the same boundary conditions, we note that

! Ldx Ldx®
— 2z — —— _ ———
1/28/dt _{ {8X)* dxs Jl(‘l‘dl 85X dxs ,!; i 8X dxi.

Taking X'V to represent W and © in turn, using the above relationship and the equations
(12)-(14), we construct $;, the local potential for the present problem, as

S, =< WOW-RPOOW-a*Wo0-1/2(D* Wy + 20 w® D' w
+ad2(DWY +a* DWW DW+a*2(DO)Y +a* 0 8
~a® Qqj2(1=2x3) WP B>

where < > represents integration with respect to x; from 0 to 1.

We take
N N
W= 3:; af, 6= g! bit, 16}
wo= $.07 g9 = %0, (m
2 4", 25

where f's and 1's are the sets of trial functions, satisfying the boundary conditions (14).
Substituting (16) and (17) into (15), minimizing with respect to a/s and b/s finally puttinga.=
a and bi=bi" (i = 1,2, ..., N) and later eliminating 4. ’s and &, ‘s, we obtain the
following (2N X 2 N) determinant to vanish

A, By,
Det =0 (18)
cy, D,
where
Ay =S LS LW S >< >
B, =~dR<fiy>

Cp = —<fn>— Qu}2<(1-20) ft;>
Dy =<h4>+ < 1>, (19
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Here the * and denote first and second derivatives with respect to x;. (For details of the

ethod, see refs. 1-4, 7-8).
Since equarions (12)—(14) do not show the symmetry properties we take trail functions

without such properties, as
(20)

fERU-x) (1 -2x0)""
L= x (1= x) (1= 2x0)"
Substitution of (20) into (19), making use of (18) gives R for various values of 2, from which
R, the critical Rayleigh number, and the corresponding value a.are obtained. The values of

R:and a. for various values of O» are presented in Table I

41. Exact numerical procedure
Following Harris and Reid® and Chock and Schechter’, we convert the boundary value

problem (12)—(14) into an initial value problem. We set

DY =Y, DY, =Y, DYs = ¥,
DY, = (-d°Y: + 2V + RY5)d, DYs = Y,
DYs=d'¥s — Y1 — @/2(1-2x:)11 2n
with
Yi{0) = Ya(0) = Y5(0) = 0 (22a)
N(l) = Y1) = Yo(I) = 0 (22b)
where
=Y, DW=V, DW=1Y,
(23)

For any particulari, ¥, has six linearly independent solutions which we callas Y{/)(j = 1.2

6) and thus the general solution for Y, is written as
[
Y= jg GY? (i=12,..,6) 24
We choose
o = § 2%
=Cs =0

wthat ¢, = ¢ =



7%

and hence

and finally from (22b), we get

Det

Y](!) 03]

)
ORIV A 6)]
Ysm(l) st(l)

Yl“’ (I)
Yl(ﬁ) (1)
Ys(ﬁl %))

Y=C ¥ 4+ C v, + o ¥,

=0
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(26)

@

Numerical integration of (21) and use of (25) lead to the determination of the elements of the
above determinant. Starting with initial guess for R, we use Newton-Raphson method for
better approximate values. From the values of R for s, the critical Rayleigh number R.and
the corresponding value a. are determined, Values of (R, a.) for various values of Qqare
presented in Table L.

5. Discussion

Proceeding in the same way as Watson®, it can be proved easily that in this problem positive
and negative rate of change of mean temperature have the same effect on the stability
criteria. From Table I we find that both the methods considered in this paper show that R.

Table I

Critical Rayleigh numbers and related constants

(A comparative study of the results)

Krighnamurthié Present study
Local potential method Exact numerical procedure
N=2 N =10
Qq ac R. 2 R a R. a Re
0.0 112 1708.0 312 174997 312 1707.76 317 1707.7677
0.667 312 1706.5 3.12 1748.56 3.12 1706.32 3.118 1706.3256
1.20 3.2 1703.3 312 1745.41 12 1703.12 3121 1703.1160
200 312 1695.1 312 1737.43 313 1694.95 3.126 1694.9565
333 313 1673.4 114 1715.95 3.14 1673.06 3.144 1673.0693
600 320 1604.3 3.20 1647.35 3.20 1603.43 3.199 1603 4398
8.00 3.24 1537.5 3.25 1580.76 325 1536.20 3.249 1536.2356
1133 334 1414.9 334 1457.83 134 1413.01 3.339 1413.0172
1800  3.49 11820 3.49 122201 349 1179.31 3.494 1179.3200
3800 370 747.1 372 716.82 372 744.79 3724 744.8015
78.00 3.86 419.1 3.84 437.40 3.86 417.62 3.855 417.6287
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decreases with increase in Qn which.is in agreement with the results obtained by Krishna-~
nurthi®, Comparing the results obtained by local potential method and the exact numerical

ocedure, we find that for N =2, the local potential method gives poor approximation
whereas for N= 10, when the computational work becomes very lengthy it gives sufficiently
sccurate result. The exact numerical proc‘ec.h.}re on the other hand gives an accurate result but
the process may be quite long unless the initial guess is sufficiently close to the actual values.
We find that if the result obtained by local potential method for N = 2 (say) is taken as the
initial guess for exact numerical procedure, the iterative process can be shortened without

affecting the accuracy.
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