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In thispapcr the'lacal potential mdhod'as lntmduced by Prigogine and Glansdorffand applicd to hydrodynamx 
rtabilityprobkms by Schechter and Himmelblsu md the'exacl numerical maecdum'used by Harrissnd Rctdwd 
a h  have bccn applied to determine the stability criteria of a hot layer offluid with mean temperature changingua 
mrmrtll rate, which had alreadv been determined bv Krinhnarnunhi. While salvinn bv the two rncthads and - .  
mpringtheresulta with the knownrcsultr it irfound that unlesssufficicnt rcprescntationfortheeigcnfunctions h 
wdercd the'local ootential method'does not give mod aooroximntion and unless the initial euas is ouite close - .. - .  
to t k  Wunl result the 'exact numerical procedure' involves long processes. It is found that two mcthodr can bc 
vlitldly combincd to gwe a useful procedure. 

Kq Word.:  Local potential mdhod, exact numerial procedure, principle of exchange of stabilities 

Theconcept of local potential had been introduced by Prigogine and ~ lansdor f f  '-'and was 
applied to hydrodynamic stability problems by Schechter and ~immelblau%nd platten'.'. 
The method gives approximate solution by constructing the local potential. The exact 
nanerical procedure involves the transformation ofthe two-point boundary value problems 
inlo an initial value problem and was used by Harris and ~ e i d ' ,  Chock and schechter9 and 
Sastry and ~ a o " .  Vanderborck and platten" had investigated the usefulness of the two 
mahods and in this paper we have investigated considering the case: the hydrodynamic 
mb'dit~ of a horizontal layer of fluid with mean temperature changing at  a constant rate. 
The problem had been solved by ~ r i s h n a m u r t h i ~  and thus the comparison of the results by 

two methods with the well-known results helps us in arriving at some conclusions 
Pmnted in the last section. 
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2. Basic equations and bounderg conditions 

A coordinate system oxix2x3 is chosen having 0x3 vertically upwards and ox,, ox, in th 
horizonfa1 plane. The fluid is assumed to be infinite in horizontal extent and eonfind 
between two rigid, perfectly conducting boundaries x3 = 0 and x l=  d. The lower anduppn 
plates are maintained at constant difference of temperatures A T>O. It is assumedthatth 
temperature in the fluid is changing at a constant rate. The basic equations, with Boussinq 
approximations are 6 , ' 2 :  

where u, ( i=  1,2,3), v, pp, g, K, and &are the components ofthe velocity, kinematicviscocity, 
the density, the pressure, the acceleration +e to gravity, thermal diffusivity and tbr 
coefficient of volume expansion respectively. K being the unit vector in the direction of ox, 
axis. 

The boundary conditions: Since the boundaries are rigid and perfectly thermally COG- 

duaing we have 

U, = o for X, = o,d (9 

and 

T = To for xl = 0 and T = To - A T for x3 = d at time t = 0 (6) 

3. Linearized equations and normal mode analysis 

In the stationary state, when u, = 0 (i = 1,2,3) and ;i' (xl,t), the mean temperatunis 
changing at a uniform rate q,; we find from (2): 
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AssumingP and p to be the values of pressure and density in the undisturbed state and 
assuming u,,p + 6p. p + 6p and T ( n ,  i )  + 6 to be the velocity components, pressure, density 
and temperature in the disturbed state where u,, 6p, 6p and 0 are small in magnitudes, we 
have after linearization, introduction of non-dimensional variables denoted by dashes 

following equations : 

ga isthe Rayleighnumber and Pr = y / K ,  (after dropping the dashes). Here R = - 
b the Prandtl number. Y Kr 

Supposing 

when the principle of exchange of stabilities is valid and substituting(1 I) into (8) and (9), We 
have, after eliminating P (x,), 

(D' - 2 )  @ = -W- Q q / 2  ( 1  -2xa) W 

a* the boundary conditions from (5) and (6), as 

W = D W = 8 = O a t x 3 = 0 , 1  
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4. Solution 
4.1 Local potential method 

Considering X' (which represents W 0  or @'", the actual solution) and X = x0 + 6 
variation satisfying the same boundary conditions, we note that 

Taking xi'' to represent Wi" and 0"' in turn, using the above relationship and the equatiolw 
(12)-(14), we construct @L, the local potential for the present problem, as 

where < >represents integration with respect to x3 from 0 to  1 

We take 

where f;'s and t,'s are the sets of trial functions, satisfying the boundary conditions (14). 
Substituting(l6) and (17) into (1 5) ,  minimizing with respect to  ai'sand bi'sfinally puttingaZ 
a,"' and bi= bi"'(i = 1,2, ...., N) and later eliminating a,'0' 'sand b,loJ 's, we obtain tk 
following (2 N X 2 N )  determinant to  vanish 
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Here the 'and " denote first and second derivatives with respect to x3. (For details of the 
method, see refs. 1-4, 7-8). 

Since equations (12)-(14) do  not Show the symmetry properties we take trail functions 
without such properties, as 

substitution of (20) into (191, making use of (1 8) gives R for various values of a, from which 
R, the critical Rayleigh number, and the corresponding value a,are obtained. The values of 
R, and a, for various values of Q a  are presented in Table I. 

43. Exact mmerical procedure 

Following Harris and ~ e i d '  and Chock and Schechterg, we convert the boundary value 
(12)-(14) into an initial value problem. We set 

DYI = Yz, DY2 = Y3, DY3 = Y4 
DY, = (-a2Yi + 2Y3 f RYs)d, DYs = Ys 
ors = d y 5  - YI - Q ~ / 2 ( 1 - 2 n ) Y 1  

with 

a(o) = fi(0) = Y,(O) = 0 

Yl(l) = Yz(1) = Y,(l) = 0 

when 

W = YI, D W = Yz, D2 W = Y3, D3 W = Y4 
0 =  Ys, D @ =  Yg 

Fmany particular:, Y ,  hassix linearly independent solutions which wecall as X i i ) ( j  = 1.2, 
..., 6) and thus the general solution for Y, is written as 

We chime 

d (0) = 6, 

that CI = C2 = C, = 0 
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and hence 

and finally from (22b), we get 

Numerical integration of (21) and use of (25) lead to the determination ofthe elements ofthe 
above determinant. Starting with initial guess for R, we use Newton-Raphson method for 
better approximate values. From the values of Rfor a's, the critical Rayleigh number R,& 
the corresponding value a ,  are determined. Values of (R,, a,)  for various values of Q.are 
presented in Table I. 

5. Discussion 

Proceeding in the same way as  ats son", it can be proved easily that in this problem positive 
and negative rate of change of mean temperature have the same effect on the stability 
criteria. From Table I we find that both the methods considered in this paper show that R, 

Table I 
Critical Rayleigh numbers and related constants 

(A comparative study of the results) 

Krisbnamurthi" Present study 

Local potential method Exact numeiial praadm 
N = I N =  10 
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decreases with increase in Q,, which is in agreement with the results obtained by Krishna- 
comparing the results obtained by local potential method and the exact numerical 

proce,jure, we find that for N = 2, the local Potential method gives poor approximation 
whereasfor N =  10, when the computational work becomes very lengthy it gives sufficiently 

The exact numerical procedure on the other hand gives an accurate result but 
the proms may be quite long unless the initial guess is sufficiently close to the actual values. 
we find that if the result obtained by local Potential method for N =  2 (say) is taken as the 
initial guess for exact numerical procedure, the iterative process can be shortened without 

a[fecti& the accuracy 
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