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Abstract

In this paper we study the elasticity problem of a cylindrically-anisotropic, elastic medium bounded by two
i ic cylindrical surfaces jected to normal pressures (plane-strain). The material of the structure is

orthotropic with cylindrical anisotropy and, in addition, is i ly inh with mechanical proper-

ties varying along the radius. General solutions in terms of Whittaker functions are presented. The results obtained
by St. Venant for a homogeneous cylindrically-anisotropic medium can be deduced from the general solutions.
Problems of the type covered in this paper are encountered in nuclear reactor design.
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1. Introduction

The elastic behaviour of a homogeneous cylindrically aeolotropic material was first studied
by St. Venant *. Problems involving nonhomogeneous media in which the properties vary
continuously with spatial position have been studied by various authors. Greif and Chou’
have adopted a numerical integration method and used computer in solving the vibration
problem of a cylindrically-anisotropic nonhomogeneous cylindrical shell (plane-strain).

A plane-strain assumption is also used here to find the analytical solution for the radial
deformation and corresponding stresses in a cylindrical shell made of cylindrically-
aeolotropic heterogeneous material under the influence of normal pressures on both boun-
daries. The results obtained by St. Venant” for the homogeneous anisotropic case and those
found by Lame’" for the homogeneous isotropic case can be deduced from the general )
results. The nonhomogeneity of the material is characterized by the elastic parameters—

e, (See refs. 3 and 4) as
ey = hyrfexp (—k) (L] = 1,23) M

Wwhere Ay, B, k and « are the prescribed parameters of material concerned.
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2. Fundamental equations

The basic system of field equations in linear isothermal static elasticity theory is (a) the
generalised Hooke’ Law, (b) the linearized strain displacement equations, and (c) the stress
equations of equilibrium. Here the axis of anisotropy is taken to be z-axis of the r,6;
cylindrical co-ordinate system, and the Young’s moduli are of the form

l

E
E,

Ey-rfeexp (—k-r*)

It

B~ r¥.exp (—k - r2), ete. )

For plane-strain assumpnon Ay of equauon (1)is then expressible in terms of K1, E; and the
Poisson’s ratios’.

For the axisymmetric case the non-trivial stress equation of equilibrium, in the absence of
body forces, takes the form

B - =0 ®

Non-zero stresses in the normal, circumferential and longitudinal directions are

da @
&= (An o+ )\12%) - P exp (— k. )

di -
A ()\u = + )\22%) r#-exp (—k. r¥)

.= (Apy—— + )\23"‘) 7% - exp (— k. r=) 4

respectively, u being the radial displacement.

3. Method of solution

The equation of equilibrium (3), with the help of equations (4) becomes

.
TF OB 1= 2ake ey SE g CBRT Rk D b e LG
11
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x=k-r* and u = Vexp (x/2) ©)

Fquation (5) changes to

av B dv 2AiB~An B x X
dv (B e o [ERRE DR L P Lty =
Z+(a+])xdx [4052)\11 { +1a)m}2 4]V 6 M
Again for
yo= x Ut .y ®
Equation {7) reduces to
. du An=B{2ZNiat 20+ B) A}
e 1 nd
g Y 4o’
+{%( +1) - } x-x*[4] u=0 (9
The solution of the above differential equation is”.
U=AM,, (x)+8 M (x) (10)
where M, , . (x) are ‘Whittaker functions in which
, A= B{2 2+ (2a+ By X}
ZP :[ 2; 122 S 1 ]1/2 (“)
o 1t
y ).12
= W(Blatl) - (12)
iy

A and B being arbitrary constants.

I 2" is an integer or zero, the solution of equation (9) may be written as
U=CW, (x)+ D Wy prx)
where

I(e—1) e 4 +50=e)

r-ern ra@ e @

Ww, (x) =
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inwhichc=/7/+2p’ and d=%-k"tp’

Finally, the radial displacement Z(r ) satisfying the equilibrium, equation (5)is obtained with
the help of equation (6), (8) and (10) as

- exp (kr®)/2 .
U T Glat L path [AM,, kr=) + BM,,  (kr*) ] (14

This expression for #f may be used in equation (4) to get the general expressions for the
stresses in terms of 4 and B.

We now consider a cylindrical_shell a <7< b. The structure is made of nonhomogeneous
cylindrically-anisotropic material. The shell is under the influence of uniformly distributed
internal and external pressures.

The boundary conditions are

G =—po (r=a)

G =-p (r=¥) (15)

I

On application of these boundary conditions in the first equation of (4) along with
equation (14), one obtains two simultaneous equations involving the two unknowns 4 and
B. Solving for 4 and B and inserting their values in (14) and (4), one obtains the complete
solution for the radial displacement and stresses as

— exp (kr*=)/2
w= SEETE [ (p b exp (kB2 api(a) = o o=

exp (ka*)/2 a (b} } M, (kr*) + {po a** exp (ka*)/2ep{(b) — p1b*#
exp (kb*)[2- a, (e} } M, . (kr*)],

~kray/2
&= ﬂ;f—,?’rg)i“ [ {1+ b*Pexp (kb™)/2 api(a) = po a? exp (ka™)/2.

ap(b)} ap (r) + { po a=? exp (ka™)[2 ap(b) — p1bo* exp (2kb*)[2 + a(e) }
aXr)}

% = ﬂgﬁﬂ [{pi+ b"* exp (kb™)|2a-i () ~ po a** exp (knse)|2
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@, (D)} By (r) + {poaPexp (ka*)[2a,(b) ~piboBexp (2kb>)/2+ a (a) }

ﬂ,r(’) L

- YA
& =Ex—p,‘(7%)“/“ [{p1 - b?exp (kb™)/2 ecpi(a) = po a* exp (ka™)/2 -

0, (B)} 7, (r) + (Po a™# exp (ka™)/2 a,. (b) - p1 b4 exp (kbi)/2 -
0, (@} ¥, (D1 (16)

where
o, (1) = {Aulkar®!~a+B/r) + An/r}-

My sy () + 2a ks kr2et My, (kr?®)

Bidr) = {An(kar™ ! —a+B/r) + Xnajr}-

My (kr) + 20k kriet M, (krie)

Yapd?) = {Ais(kar®'—a+ B/r) + Aas/r}
My o (k%) + 2akss kriest My, (lor™®)
wd M= a,(a)a,(d)- e (a): a,(b) (17

The prime indicates the derivative of the function with respect to its argument.

Stresses in a cylindrical shell (¢ < r < b) made of homogeneous cylindrically-anisotropic
material, under the same boundary conditions (15), may be found from the second, third and
fourth equations of (16) on letting 8 — 0 and k ~ 0 and these agree with the results obtained
by St. Venant (quoted in ref. 2). For an isotropic body

A= Ap = A+ 24
Aip = N3 = Aa3 = A

Equation (11), with the application of these relations, gives
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2

2ap’=[lfﬁ{x+2“

+ Qe+ }]”

when these are used in the second, third and fourth equations of (16) along with the limits g
— 0 and & — 0, one gets Lamés results given in ref, I.

In computing those results one has to use

1t Mkrvp' (€3] -

Y M 0

Lt (M0 Lo e @ sy 18
0 o O 0 and (-0 W (D) {24 p (18)

I the cylinder is under the action of internal pressure only, the external surface being
stress-free, the stresses for such an in-homogeneous cylinder are obtained from (16) by
taking p; = 0.

4. Numerical resuits

Stresses in the normal, circumferential and longitudinal directions are computed and plotted
against non-dimensional radial co-ordinate (r/a) in figs. 1 and 2 for two types of loading
systems for cylindrical shell structures made of isotropic and anisotropic non-homaogeneous
layered media or aggregate.
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Fi6. 1. Leading system 1 (p; = 0) isotropic and  Fic.2. Loading system 11(p:=po/ 2)isotropicasd
anisotropic veriations.

anisotropic variation.
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All the numerical results have been calculated for the structure whose outer radius is one
and half times that of the inner radius and non-homogeneity parameters a = 2, f=~1and

r=2/a".

The elastic parameters are chosenas Ay = 918, X2, = 408, A 2 =918, A 13 =275, A3 =273
(see ref. (1) for anisotropic body, which resembles barite-cement aggregate, see ref. (6) ), and
are used extensively as radiation shielding material. On the other hand, for isotropic body,
they are taken as Ay = An = Ea /(1 +0) (1~20), A= Ay = Ay = Eo /o (1 + a) with
s=1/3 but E may be anything. The graphs clearly show the difference of variations in
stresses for the above mentioned structures made of isotropic and anisotropic materials
while they are keeping their non-homogeneous character since they are formed of layered
media having variation of stiffness according to the Jaw given in (1) or where they are formed
out of aggregate. The mechanical loading system 7 corresponds to the fact that the structure
is stress-free in the outer surface but the inner one is subjected to pressure po. In the loading

system [I the inner surface has the same pressure while at the outer surface G, = — po/2.
References
1. Love, AE.H, The h ical theory of icity, Cambridge University Press, 1952.

Theory of elasticity of an anisotropic body, Mir Publishers, Moscow, 1979, Novy

2. Lexnnrrski, S.G.
Knigi H K No. 48-79(6).

3. GREIF, R. AND The pr ion of radially sy ic stress waves in anisatropic, nonhomogene-
Crov, 8.C. ous clastic media, J. Appl. Mech., 1971, 38, 51-57.
4. Rov,S8.C. Radial deformations of nonh spherically anisotropicelastic media, J.

Indian Inst. Sci., 1976, 58(7), 303-314.
. WHITTAKER, E.T. AND A course of modern analysis, Cambridge University Press, 1965.
WATSON, G.N.
6. ORCHARD, D.F, Concrete technology, Vol. I, Applied Science Publishers Ltd., London, 1979,

o



