Quantification of Signaling Networks

P K Vinod, K V Venkatesh

Abstract


Studies in living system in the past several decades have generated qualitative understanding of the molecular interactions resulting in large networks. These networks were essentially deciphered by breaking the components of a cell through a reductionist approach. Biological networks comprising of interactions between genes, proteins and metabolites co-ordinate in the regulation of cellular processes. However, understanding the cellular function also requires quantitative information including network dynamics, which results due to an inherent design principle embedded in the network. Interactions within the network are well organized to form a definite regulatory structure, which in turn exhibits different emergent properties. The property of the network helps the cell to achieve the desired phenotypic state in a controlled manner. The dynamics of the network or the relationship between network structure and cellular behavior cannot be understood intuitively from the interaction map of the network. Computational methods can now be employed to study these networks at system level. The field of systems biology looks at integrating the interaction maps obtained through molecular biological approach. Various studies at the system level have been reported for pathways namely chemotactic response in bacteria, cell cycle and osmotic signaling in yeast, growth factor stimulated signaling pathways in mammals. This review focuses on understanding signaling networks with the help of mathematical models.

Keywords


Feedback regulation; simulation and modeling; systemic properties; biological networks.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.