Stochastic Methods for the Analysis of Uncertain Composites
Abstract
Full Text:
PDFReferences
Lekou, D.J.; Philippidis, T.P.: ‘Mechanical property variability in FRP laminates and its effect on failure prediction’. Composites Part B: Engineering, 39, 7–8, pp. 1247–1256 (2008).
Schueller, G.I.: ‘Developments in stochastic structural mechanics’. Archive of Applied Mechanics, 75, pp. 755–773 (2006).
Carrera, E.: ‘Theories and finite elements for multilayered, anisotropic, composite plates and shells’. Archives of Computational Methods in Engineering, 9, 2, pp. 87–140 (2002).
Jeong, H.K.; Shenoi, R.A.: ‘Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation’. Computers and Structures, 76, 3, pp. 219–235 (2000).
Graham, L.L.; Deodatis, G.: ‘Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties’. Probabilistic Engineering Mechanics, 16, pp. 11–29 (2001).
Nieuwenhof, B.V.D.; Coyette, J.P.: ‘Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties’. Computer Methods in Applied Mechanics and Engineering, 192, pp. 3705–3729 (2003).
Singh, B.N.; Iyengar, N.G.R.; Yadav, D.: ‘Effect of random material properties on buckling of composite plates’. Journal of Engineering Mechanics, 127, 9, pp. 873–879 (2001).
Fernlund, G.; Rahman, N.; Courdji, R.; Bresslauer, M.: ‘Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts’. Composites Part A: Applied Science and Manufacturing, 33, 3, pp. 341–351 (2002).
Huang, H.; Talreja, R.: ‘Effect of void geometry on elastic properties of uni-directional fiber reinforced composites’. Composites Science and Technology, 65, pp. 1964–1981 (2005).
Potter, K.; Langer, C.; Hodgkiss, B.; Lamb, S.: ‘Sources of variability in uncured aerospace grade unidirectional carbon fibre epoxy preimpregnate’. Composites Part A: Applied Science and Manufacturing, 38, 3, pp. 905–916 (2007).
Manohar, C.S.; Ibrahim, R.A.: ‘Progress in structural dynamics with stochastic dynamics with stochastic parameter variations: 1987–1998’. Applied Mechanics Review, 52, pp. 177–196 (1999).
Nakagiri, S.; Takabatake, H.; Tani, S.: ‘Uncertain eigenvalue analysis of composite laminated plates by the SFEM’. Transactions of ASME, Journal of Engineering for Industry, 109, pp. 9–12 (1987).
Zhang, J.; Ellingwood, B.: ‘Effects of uncertain material properties on structural stability’. Journal of Structural Engineering, 121, pp. 705–716 (1993).
Naveenthraj, B.; Iyengar, N.G.R.; ‘Yadav, D.: Response of composite plates with random material properties using FEM and MCS’. Advanced Composite Materials, 7, pp. 219–237 (1998).
Potter, K.; Campbell, M.; Langer, C.; Wisnom, M.R.: ‘The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components’. Composites Part A: Applied Science and Manufacturing, 36, 2, pp. 301–308 (2005).
Agarwal, H.; Renaud, J.E.; Preston, E.L.; Padmanabhan, D.: ‘Uncertainty quantification using evidence theory in multidisciplinary design optimization’. Reliability Engineering and System Safety, 85, pp. 281–294 (2004).
Oberkampf, W.L.; Helton, J.C.; Hoslyn, C.A.; Wojtkiewicz, S.F.; Ferson, S.: ‘Challenge problems: uncertainty in system response given uncertain parameters’. Reliability Engineering and System Safety, 85, pp. 11–19 (2004).
Sriramula, S.; Chryssanthopoulos, M.K.: ‘Quantification of uncertainty modelling in stochastic analysis of FRP composites’. Composites Part A: Applied Science and Manufacturing, 40, pp. 1673–1684 (2009).
Shinozuka, M.: ‘Monte Carlo solution of structural dynamics’. Computers and Structures, 2, pp. 855–874 (1972).
Shinozuka, M.; Jan, C.M.: ‘Digital simulation of random processes and its applications’. Journal of Sound and Vibration, 25, pp. 111–128 (1972).
Collins, J.D.; Thompson, W.T.: ‘The eigenvalue problem for structural systems with uncertain parameters’. AIAA Journal, 7, 4, pp. 642–648 (1969).
Liu, W.K.; Belytschko, T.; Mani, A.: ‘Random fields finite elements’. International Journal for Numerical Methods in Engineering, 23, pp. 1831–1845 (1986).
Kleiber, M.; Hein, T.D.: ‘The stochastic finite element method: Basic perturbation technique and computer implementation’. John Wiley & Sons Ltd, (1992).
Salim, S.; Yadav, D.; Iyengar, N.G.R.: ‘Analysis of composite plates with random material characteristics’. Mechanics Research Communications, 20, 5, pp. 405–414 (1993).
Li, J.; Chen, J.: ‘Stochastic dynamics of structures’. John Wiley & Sons (Asia) Pte Ltd. (2009).
Spanos, P.D.; Ghanem, R.G.: ‘Stochastic finite element expansion for random media’. Journal of Engineering Mechanics, ASCE, 115, 5, pp. 1035–1053 (1989).
Iwan, W.D.; Jensen, H.: ‘On the dynamic response of continuous systems including modal uncertainty’. Journal of Applied Mechanics, 60, pp. 484–490 (1993).
Pandit, M.K.; Singh, B.N.; Sheikh, A.H.: ‘Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties’. International Journal of Mechanical Sciences, 51, pp. 363–371 (2009).
Salim, S.; Iyengar, N.G.R.; Yadav, D.: ‘Buckling of laminated plates with random material characteristics’. Applied Mathematics and Computation, 5, pp. 1–9 (1998).
Yadav, D.; Verma, N.: ‘Buckling of composite circular cylindrical shells with random material properties’. Composite Structures, 37, pp. 385–391 (1997).
Onkar, A.K.; Upadhyay, C.S.; Yadav, D.: ‘Generalised buckling analysis of laminated plates with random material properties using stochastic finite elements’. International Journal of Mechanical Sciences, 48, pp. 780–798 (2006).
Tripathi, V.; Singh, B.N.; Shukla, K.K.: ‘Free vibration of laminated composite conical shells with random material properties’. Composite Structures, 81, 1, pp. 96–104 (2007).
Stefanou, G.: ‘The stochastic finite element method: Past, present and future’. Computer Methods in Applied Mechanics and Engineering, 198, pp. 1031–1051 (2009).
Shinozuka, M.; Deodatis, G.: ‘Simulation of stochastic process by spectral representation’. Applied Mechanics Review, 42, pp. 191–203 (1991).
Shinozuka, M.; Deodatis, G.: ‘Simulation of multi-dimensional Gaussian stochastic fields by spectral representation’. Applied Mechanics Review, 49, pp. 29–53 (1996).
Ghanem, R.; Spanos, P.D.: ‘Stochastic finite elements: A spectral approach’. Dover publications, (1991).
Kang, Z.; Luo, Y.J.: ‘Non-probabilistic reliability based topology optimization of geometrically non-linear structures using convex models’. Computer Methods in Applied Mechanics and Engineering, 198, pp. 3228–3238 (2009).
Mourelatos, Z.P.; Zhou, J.: ‘Reliability estimation with insufficient data based on possibility theory’. AIAA Journal, 43, 8, pp. 1696–1705 (2005).
Du, L.; Choi, K.K.; Youn, B.D.: ‘Inverse possibility analysis method for possibility-based design optimization’. AIAA Journal, 44, 11, pp. 2682–2690 (2006).
Bai, Y.C.; Jiang, C.; Han, X.; Hu, D.A.: ‘Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties’. Finite Elements in Analysis and Design, 68, pp. 52–62 (2013).
Muhanna, R.L.; Mullen, R.L.: ‘Formulation of fuzzy finite-element methods for solid mechanics problems’. Computer-Aided Civil and Infrastructure Engineering, 14, 2, pp. 107–117 (1999).
Zhang, H.; Mullen, R.L.; Muhanna, R.L.: ‘Safety structural analysis with probability-boxes’. International Journal of Reliability and Safety, 6, pp. 110–129 (2012).
Dempster, A.P.: ‘Upper and lower probabilities generated by a random closed interval’ Annals of Mathematical Statistics, 39, 3, pp. 957–966 (1968).
Shafer, G.: ‘A Mathematical Theory of Evidence’. Princeton University Press, Princeton (1976).
Stefanou, G.; Papadrakakis, M.: ‘Stochastic finite element analysis of shells with combined random material and geometric properties’. Computer Methods in Applied Mechanics and Engineering, 193, 1–2, pp. 139–160 (2004).
Pagano, N.J.; Hatfield, H.J.: ‘Elastic behavior of multilayered bidirectional composites’. AIAA Journal, 10, 7, pp. 931–933 (1972).
Srinivas, S.; Rao, A.K.: ‘Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates’. International Journal of Solids and Structures, 6, 11, pp. 1463–1481 (1970).
Noor, A.K.: ‘Free vibrations of multilayered composite plates’. AIAA Journal, 11, 7, pp. 1038–1039 (1973).
Demasi, L.: ‘Three-dimensional closed form solution and exact thin plate theories for isotropic plates’. Composite Structures, 80, 2, pp. 183–195 (2007).
Mindlin, R.D.: ‘Influence of rotary inertia and shear on flexural motions of isotropic elastic plates’. Journal of Applied Mechanics, 18, pp. 31–38 (1951).
Yang, P.C.; Norris, C.H.; Stavasky, Y.: ‘Elastic wave propagation in heterogeneous plates’. International Journal of Solids and Structures, 2, 4, pp. 665–684 (1966).
Whitney, J.M.: ‘The effect of transverse shear deformation on the bending of laminated plates’. Journal of Composite Materials, 3, 3, pp. 534–547 (1969).
Whitney, J.M.; Pagano, N.J.: ‘Shear deformation in heterogeneous anisotropic plates’. Journal of Applied Mechanics, 37, 4, pp. 1031–1036 (1970).
Reissner, E.: ‘On transverse bending of plates, including the effect of transverse shear deformations’. International Journal of Solids and Structures, 11, 5, pp. 569–573 (1975).
Reissner, E.: ‘Note on the effect of transverse shear deformation in laminated anisotropic plates’. Computer Methods in Applied Mechanics and Engineering, 20, 2, pp. 203–209 (1979).
Pai, P.F.: ‘A new look at shear correction factors and warping functions of anisotropic laminates’. International Journal of Solids and Structures, 32, 16, pp. 2295–2313 (1995).
Lo, K.H.; Christensen, R.M.; Wu, E.M.: ‘A higher-order theory of plate deformation, part 2: Laminated plates’. Journal of Applied Mechanics, 44, 4, pp. 669–676 (1977).
Levinson, M.: ‘An accurate, simple theory of statics and dynamics of elastic plates’. Mechanics Research Communications, 7, 6, pp. 343–350 (1980).
Reddy, J.N.: ‘A simple higher-order theory for laminated composite plates’. Journal of Applied Mechanics, 51(4), 745–752 (1984).
Pandya, B.N.; Kant, T.: ‘Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations’. International Journal of Solids and Structures, 24, 12, pp. 1267–1286 (1988).
Kant, T.; Ravichandran, R.V.; Pandya, B.N.; Mallikarjuna: ‘Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory’. Composite Structures, 9, 4, pp. 319–342 (1988).
Khdeir, A.A.; Reddy, J.N.: ‘Free vibrations of laminated composite plates using second-order shear deformation theory’. Computers and Structures, 71, 6, pp. 617–626 (1999).
Kant, T.; Swaminathan, K.: ‘Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments’. Composite Structures, 49, 1, pp. 65–75 (2000).
Swaminathan, K.; Patil, S.S.: ‘Higher order refined computational model with 12 degrees of freedom for the stress analysis of antisymmetric angle-ply plates—analytical solutions’. Composite Structures, 80, 4, pp. 595–608 (2007).
Ferriera, A.J.M.; Roque, C.M.C.; Martins, P.A.L.S.: ‘Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method’. Composites Part B: Engineering, 34, 7, pp. 627–36 (2003).
Ferreira, A.J.M.; Roque, C.M.C.; Neves, A.M.A.; Jorge, R.M.N.; Soares, C.M.M.; Reddy, J.N.: ‘Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory’. Thin-Walled Structures, 49, 1, pp. 804–811 (2011).
Talha, M.; Singh, B.N.: ‘Static response and free vibration analysis of FGM plates using higher order shear deformation theory’. Applied Mathematical Modelling, 34, 12, pp. 3991–4011 (2010).
Stein, M.: ‘Nonlinear theory for plates and shells including the effects of transverse shearing’. AIAA Journal, 24, 9, pp. 1537–1544 (1986).
Touratier, M.: ‘An efficient standard plate theory’. International Journal of Engineering Science, 29, 8, pp. 901–916 (1991).
Soldatos, K.P.: ‘A transverse shear deformation theory for homogenous monoclinic plates’. Acta Mechanica, 94, 3–4, pp. 195–220 (1992).
Mantari, J.L.; Oktem, A.S.; Soares, C.G.: ‘A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates’. International Journal of Solids and Structures, 49, 1, pp. 43–53 (2012).
Grover, N.; Singh, B.N.; Maiti, D.K.: ‘New non-polynomial shear-deformation theories for structural behavior of laminated-composite and sandwich Plates’. AIAA Journal, 51, 8, pp. 1861–1871 (2013).
Karama, M.; Afaq, K.S.; Mistou, S.: ‘A new theory for laminated composite plates’. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 223, pp. 53–62 (2009).
Aydogdu, M.: ‘A new shear deformation theory for laminated composite plates’. Composite Structures, 89, 1, pp. 94–101 (2009).
Mantari, J.L.; Oktem, A.S.; Soares, C.G.: ‘Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory’. Composite Structures, 94, 1, pp. 37–49 (2011).
Meiche, N.E.; Tounsi, A.; Ziane, N.; Mechab, I.; Bedia, E.A.A.: ‘A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate’. International Journal of Mechanical Sciences, 53, 4, pp. 237–247 (2011).
Grover, N.; Maiti, D.K.; Singh, B.N.: ‘A new inverse hyperbolic shear deformation theory for static and buckling response of laminate composite and sandwich plates’. Composite Structures, 95, pp. 667–675 (2013).
Grover, N.; Singh, B.N.; Maiti D.K..: ‘Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response’. International Journal of Mechanical Sciences. 67, pp. 89–99 (2013).
Murakami, H.: ‘Laminated composite plate theory with improved in-plane responses’. Journal of Applied Mechanics, 53, 3, pp. 661–666 (1986).
Di Sciuva, M.: ‘An improved shear deformation theory for moderately thick multilayered anisotropic shells and plates’. Journal of Applied Mechanics, 54, 3, pp. 589–596 (1987).
Lee, C.Y.; Liu, D.: ‘An interlamininar stress continuity theory for laminated composite analysis’. Computers and Structures, 42, 1, pp. 69–78 (1992).
Cho, M.; Parmerter, R.R.: ‘An efficient higher-order plate theory for laminated composites’. Composite Structures, 20, 2, pp. 113–123 (1992).
Carrera, E.: ‘C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity’. International Journal for Numerical Methods in Engineering, 39, 11, pp. 1797–1820 (1996).
Ferreira, A.J.M.: ‘Analysis of composite plates using a layerwise shear deformation theory and multiquadrics discretization’. Mechanics of Advanced Materials and Structures, 12, 2, pp. 99–112 (2005).
Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R.M.N.: ‘Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions’. Composites Part B: Engineering, 36, 8, pp. 559–572 (2005).
Kulkarni, S.D.; Kapuria, S.: ‘Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zig-zag theory’. Computational Mechanics, 42, 6, pp. 803–824 (2008).
Pandit, M.K.; Singh, B.N.; Sheikh, A.H.: ‘Buckling of laminated sandwich plates with soft core based on an improved higher order zig-zag theory’. Thin-Walled Structures, 46 (11), pp. 1183–1191 (2008).
Pandit, M.K.; Sheikh, A.H.; Singh, B.N.: ‘An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core’. Finite Elements in Analysis and Design, 44, 9–10, pp. 602–610 (2008).
Rodrigues, J.D.; Roque, C.M.C.; Ferreira, A.J.M.; Carrera, E.; Cinefra, M.: ‘Radial basis functions-finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami’s zig-zag theory’. Composite Structures, 93, 7, pp. 1613–1620 (2011).
Ferreira, A.J.M.; Roque, C.M.C.; Carrera, E.; Cinefra, M.; Polit, O.: ‘Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami’s zig-zag theory’. European Journal of Mechanics—A/Solids, 30, pp. 559–570 (2011).
Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Cinefra, M.; Jorge, R.M.N.; Soares, C.M.M.: ‘Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects’. Advances in Engineering Software, 52, pp. 30–43 (2012).
Mantari, J.L.; Oktem, A.S.; Soares, C.G.: ‘A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates’. Computers and Structures, 94–95, pp. 45–53 (2012).
Thai, C.H.; Ferreira, A.J.M.; Carrera, E.; Nguyen-Xuan, H.: ‘Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory’. Composite Structures, 104, pp. 196–214 (2013).
Sahoo, R.; Singh, B.N.: ‘A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates’. Composite Structures, 105, pp. 385–397 (2013)
Reissner, E.: ‘Reflection on the theory of elastic plates’. Applied Mechanics Review, 38, 11, pp. 1453–1464 (1985).
Noor, A.K.; Burton, W.S.: ‘Assessment of shear deformation theories for multilayered composite plates’. Applied Mechanics Review, 42, 1, pp. 1–13 (1989).
Kapania, R.K.; Raciti, S.: ‘Recent advances in analysis of laminated beams and plates, Part I: Shear effects and buckling’. AIAA Journal, 27, 7, pp. 923–934 (1989).
Kapania, R.K.; Raciti, S.: ‘Recent advances in analysis of laminated beams and plates, Part II: Vibrations and wave propagation’. AIAA Journal, 27, 7, pp. 935–946 (1989).
Reddy, J.N.: ‘A review of refined theories of laminated composite plates’. Shock & Vibration Digest, 22, 7, pp. 3–17 (1990).
Mallikarjuna; Kant, T.: ‘A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches’. Composite Structures, 23, 4, pp. 293–312 (1993).
Liu, D.; Li, X.: ‘An overall view of laminate theories based on displacement hypothesis’. Journal of Composite Materials, 30, 14, pp. 1539–1561 (1996).
Kant, T.; Swaminathan, K.: ‘Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments’. Composite Structures, 49, 1, pp. 65–75 (2000).
Carrera, E.: ‘Historical review of zig-zag theories for multilayered plates and shells’. Applied Mechanics Review, 56, pp. 65–75 (2003).
Zhang, Y.X.; Yang, C.H.: ‘Recent developments in finite element analysis for laminated composite plates’. Composite Structures, 88, 1, pp. 147–157 (2009.).
Carrera, E.; Brischetto, S.: ‘A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates’. Applied Mechanics Review, 62, 1, 010803, pp. 1–17 (2009).
Khandan, R.; Noroozi, S.; Sewell, P.; Vinney, J.: ‘The development of laminated composite plate theories: a review’. Journal of Materials Science. 47, 16, pp. 5901–5910 (2012).
Jha, D.K.; Kant, T.; Singh, R.K.: ‘A critical review of recent research on functionally graded plates’. Composite Structures, 96, pp. 833–849 (2013).
Kitipornchai, S.; Xiang, Y.; Wang, C.M.; Liew, K.M.: ‘Buckling analysis of thick skew plates’. International Journal for Numerical Methods in Engineering, 36, 8, pp. 1299–1310 (1993).
Li, W.Y.; Cheung, Y.K.; Tham, L.G.: ‘Spline finite strip analysis of general plates’. Journal of Engineering Mechanics ASCE, 112, 1 pp. 43–54 (1986).
Dawe, D.J.; Wang, S.: ‘Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates’. International Journal of Mechanical Sciences, 37, pp. 645–667 (1995).
Civalek. Ö.: ‘Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach’. Finite Elements in Analysis and Design, 43 pp. 1013–1022 (2007).
Pandya, B.N.; Kant, T.: ‘Finite element analysis of laminated composite plates using a Higher-order displacement model’. Composites Science and Technology, 32, pp. 137–155 (1988).
Maiti, D.K.; Sinha, P.K.: ‘Bending, free vibration and impact responses of thick laminated composite plates’. Computers and Structures, 59, 1, pp. 115–129 (1996).
Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.: ‘Concepts and application of finite element analysis’. 4th edition, (2001).
Reddy, J.N.: An Introduction to the Finite Element Method. 3rd edition, Tata McGraw Hill, (2005).
Papadimitriou, C.; Katafygiotis, L.S.; Beck, J.L.: ‘Approximate analysis of response variability of uncertain linear systems’. Probabilistic Engineering Mechanics, 10, pp. 251–264 (1995).
Singh, B.N.; Yadav, D.; Iyengar, N.G.R.: ‘Natural frequencies of composite plates with random material properties using higher-order shear deformation theory’. International Journal of Mechanical Sciences, 43, pp. 2193–2214 (2001).
Singh, B.N.; Yadav, D.; Iyengar, N.G.R.: ‘A C0 element for free vibration of composite plates with uncertain material properties’. Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials, 11, 4, pp. 331–350 (2001).
Singh, B.N.; Yadav, D.; Iyengar, N.G.R.: ‘Free vibration of laminated spherical panels with random material properties’. Journal of Sound and Vibration, 244, 2, pp. 321–338 (2001).
Singh, B.N.; Yadav, D.; Iyengar, N.G.R.: ‘Free vibration of composite cylindrical panels with random material properties’. Composite Structures, 58, 4, pp. 435–442 (2002).
Pandit, M.K.; Singh, B.N.; Sheikh, A.H.: ‘Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory’. Journal of Aerospace Engineering, 23, 1, pp. 14–23 (2010).
Pandit, M.K.; Singh, B.N.; Sheikh, A.H.: ‘Vibration of Sandwich Plates with Random Material Properties using Improved Higher-Order Zig-Zag Theory’. Mechanics of Advanced Materials and Structures, 17, pp. 561–572 (2010).
Lal, A.; Singh, B.N.; Kumar, R.: ‘Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties’. Structural Engineering and Mechanics, 27, 2, pp. 198–222 (2007).
Lal, A.; Singh, B.N.: ‘Stochastic nonlinear free vibration of laminated composite plates resting on elastic foundation in thermal environments’. Computational Mechanics, 44, 1, pp. 15–29 (2009).
Singh, B.N.; Lal, A.: ‘Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration’. International Journal of Pressure Vessels and Piping, 87, 10, pp. 559–574 (2010) .
Lal, A.; Singh, B.N.: ‘Stochastic free vibration of laminated composite plates in thermal environments’. Journal of Thermoplastic Composite Materials, 23, 1, pp. 57–77 (2010).
Singh, B.N.; Umrao, A.; Shukla, K.K.; Vyas, N.: ‘Second-order statistics of natural frequencies of smart laminated composite plates with random material properties’. Smart Structures and Systems, 4, 1, pp. 19–34 (2008).
Singh, B.N.; Vyas, N.; Dash, P.: ‘Stochastic free vibration analysis of smart random composite plates’. Structural Engineering and Mechanics, 31, 5, pp. 481–506 (2009).
Dash, P.; Singh, B.N.: ‘Geometrically nonlinear free vibration of laminated composite plate embedded with piezoelectric layers having uncertain material properties’. Journal of Vibration and Acoustics, Transactions of the ASME, 134, 6, 061006, pp. 1–13 (2012).
Singh, B.N.; Iyenger, N.G.R.; Yadav, D.: ‘Effects of random material properties on buckling of composite plates’. Journal of Engineering Mechanics, 127, pp. 873–879 (2001).
Singh, B.N.; Iyenger, N.G.R.; Yadav, D.: ‘A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties’. Structural Engineering and Mechanics, 13, 1, pp. 53–74 (2002).
Singh, B.N.; Yadav, D.; Iyenger, N.G.R.: ‘Initial buckling of composite cylindrical panels with random material properties’. Composite Structures, 53, 1, pp. 55–64 (2001).
Singh, B.N.; Yadav, D.; Iyenger, N.G.R.: ‘Stability analysis of laminated cylindrical panels with uncertain material properties’. Composite Structures, 54, 1, pp. 17–26 (2001).
Lal, A.; Singh, B.N.; Kumar, R.: ‘Effect of random system properties on initial buckling of composite plates resting on elastic foundation’. International Journal of Structural Stability and Dynamics, 8, 1, pp. 103–130 (2008).
Pandit, M.K.; Singh, B.N.; Sheikh, A.H.: ‘Buckling of sandwich plates with random material properties using improved plate model’. AIAA Journal, 47, 2, pp. 418–428 (2009).
Lal, A.; Singh, B.N.; Kumar, R.: ‘Effects of random system properties on the thermal buckling analysis of laminated composite plates’. Computers and Structures, 87, 17–18, pp. 1119–1128 (2009).
Verma, V.K.; Singh, B.N.: ‘Thermal buckling of laminated composite plates with random geometric and material properties’. International Journal of Structural Stability and Dynamics, 9, 2, pp. 187–211 (2009).
Singh, B.N.; Verma, V.K.: ‘Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties’. Journal of Reinforced Plastics and Composites, 28, 4, pp. 409–427 (2009).
Lal, A.; Singh, B.N.; Kumar, R.: ‘Static response of laminated composite plates resting on elastic foundation with uncertain system properties’. Journal of Reinforced Plastics and Composites, 26, 8, pp. 807–829 (2007).
Singh, B.N.; Lal, A.; Kumar, R.: ‘Nonlinear bending response of laminated composite plates on nonlinear
elastic foundation with uncertain system properties’. Engineering Structures, 30, 4, pp. 1101–1112 (2008).
Lal, A.; Singh, B.N.; Kumar, R.: ‘Stochastic nonlinear bending response of laminated composite plates with system randomness under lateral pressure and thermal loading’. Archive of Applied Mechanics, 81, 6, pp. 727–743 (2011).
Lal, A.; Singh, B.N.; Anand, S.: ‘Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading’. International Journal of Mechanical Sciences, 53, 10, pp. 855–866 (2011).
Lal, A.; Singh, B.N.: ‘Effect of random system properties on bending response of thermo-mechanically loaded laminated composite plates’. Applied Mathematical Modelling, 35, 12, pp. 5618–5635 (2011).
Refbacks
- There are currently no refbacks.