Molecular and Crystal Engineering Approaches Towards the Design of Functional Supramolecular Gelators

Tapas Kumar Adalder, Uttam Kumar Das, Joydeb Majumder, Rajdip Roy, Parthasarathi Dastidar

Abstract


Supramolecular gelators are an important class of compounds
capable of immobilizing various solvents resulting in gels. Not much is known about the gelation mechanism and consequently, designing gelator molecule is a daunting task. However, efforts are being made to decipher the mystery of gelation and various groups are engaged in designing new gelators. Both molecular- and crystal engineering are being applied to synthesize new gelator molecules. This review article describes briefly the developments including the recent ones in this area; it also covers interesting applications offered by these wonderful materials.

Full Text:

PDF

References


P. Terech and R. G. Weiss, Low Molecular Mass Gelators of Organic Liquids and the Properties of their Gels, Chem. Rev., 97, 3133–3159 (1997).

R. G. Weiss and P. Terech, Eds. Molecular Gels. Materials with Self-Assembled Fibrillar Networks; Springer: Dordrecht, The Netherlands, (2005).

S. Nandi, H.-J. Altenbach, B. Jakob, K. Lange, R. Ihizane and M. P. Schneider, A Novel Class of Organo- (Hydro-) Gelators Based on Ascorbic Acid, Org. Lett., 13, 1980–1983 (2011).

P. Sahoo, I. Chakraborty and P. Dastidar, Reverse Thermal Gelation of Aromatic Solvents by a Series of Easily Accessible Organic Salt Based Gelators, Soft Matter, 8, 2595–2598 (2012).

a) F. Zhao, M. L. Ma, B. Xu, Molecular Hydrogels of Therapeutic Agents, Chem. Soc. Rev., 38, 883–891 (2009).

b) K. Y. Lee and D. J. Mooney, Hydrogels for Tissue Engineering,

Chem. Rev., 101, 1869–1879 (2001).

I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida and I. Hamachi, Molecular Recognition in a Supramolecular Hydrogel to Afford a Semi-Wet Sensor Chip, J. Am. Chem. Soc., 126, 12204–12205 (2004).

S. S. Babu, S. Prasanthkumar and A. Ajayaghosh, SelfAssembled Gelators for Organic Electronics, Angew.

Chem. Int. Ed., 51, 1766–1776 (2012).

A. Wynne, M. Whitefield, A. J. Dixon and S. Anderson, An Effective, Cosmetically Acceptable, Novel Hydro-Gel Emollient for the Management of Dry Skin Conditions, J. Dermatol. Treat., 13, 61–66 (2002).

E. Carretti, M. Bonini, L. Dei, B. H. Berrie, L. V. Angelova, P. Baglioni and R. G. Weiss, New Frontiers in Materials Science for Art Conservation: Responsive Gels and Beyond, Acc. Chem. Res., 43, 751–760 (2010).

K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto and N. Kimizuka, Heat-Set Gel-Like Networks of Lipophilic Co(II) Triazole Complexes in Organic Media and their Thermochromic Structural Transitions, J. Am. Chem. Soc., 126, 2016–2021 (2004).

M. George, and R. G. Weiss, Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators

and Organic Liquids, Acc. Chem. Res., 39, 489–497 (2006).

a) Y. Jeong, K. Hanabusa, H. Masunaga, I. Akiba, K. Miyoshi, S. Sakurai and K. Sakurai, Solvent/Gelator Interactions and Supramolecular Structure of Gel Fibers in Cyclic Bis-Urea/Primary Alcohol Organogels, Langmuir, 21, 586–594 (2005).

b) A. Pal, Y. K. Ghosh and S. Bhattacharya, Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids, Tetrahedron, 63, 7334–7348 (2007).

c) M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, and K. Hanabusa, Effects of Hydrogen Bonding and van der Waals Interactions on Organogelation Using Designed Low-Molecular-Weight Gelators and Gel Formation at Room Temperature, Langmuir, 19, 8622–8624 (2003).

K. Hanabusa, K. Okui, K. Karaki, T. Koyama and H. Shirai, A Small Molecular Gelling Agent for Organic Liquids: N-Benzyloxycarbonyl-L-alanine 4-Hexadecanoyl-2-nitrophenyl Ester, J. Chem. Soc., Chem. Commun., 1371–1373 (1992).

F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg, B. L. Feringa, Geminal Bis-ureas as gelators for organic solvents: Gelation properties and structural studies in solution and in the gel state, Chem. Eur. J., 6, 2633–2643 (2006).

A. Friggeri, O. Gronwald, K. J. C. van Bommel, S. Shinkai

and D. N. Reinhoudt, Charge-Transfer Phenomena in Novel, Dual-Component, Sugar-Based Organogels, J. Am. Chem. Soc., 124, 10754–10758 (2002).

a) G. R. Desiraju, J. J. Vittal and A. Ramanan, Crystal Engineering— A Textbook, World Scientific, 2011.

b) E. Ostuni, P. Kamaras, and R. G. Weiss, Novel X-ray Method for in Situ Determination of Gelator Strand Structure: Polymorphism of Cholesteryl Anthraquinone- 2-carboxylate, Angew. Chem Int. Ed. Engl. 35, 1324–1326 (1996).

c) G. R. Desiraju, Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis, Angew. Chem., Int. Ed. Engl., 34, 2311–2327 (1995).

R. Luboradzki, O. Gronwald, M. Ikeda, S. Shinkai and D. N. Reinhoudt, An Attempt to Predict the Gelation Ability of Hydrogen-bond-based Gelators Utilizing a Glycoside Library, Tetrahedron, 56, 9595–9599 (2000).

A. Ballabh, D. R. Trivedi, and P. Dastidar, Structural Studies

of a New Low Molecular Mass Organic Gelator for Organic Liquids Based on Simple Salt, Chem. Mater., 15, 2136–2140 (2003).

a) D. R. Trivedi and P. Dastidar, Instant Gelation of Various Organic Fluids Including Petrol at Room Temperature by a New Class of Supramolecular Gelators, Chem. Mater. 18, 1470–1478 (2006).

b) U. K. Das, D. R. Trivedi, N. N. Adarsh, and P. Dastidar, Supramolecular Synthons in Noncovalent Synthesis of a Class of Gelators Derived from Simple Organic Salts: Instant Gelation of Organic Fluids at Room Temperature via in situ Synthesis of the Gelators, J. Org. Chem., 74, 7111–7121 (2009).

a) P. Sahoo, V. G. Puranik, A. K. Patra, P. U. Sastry and P. Dastidar Ferrocene Based Organometallic Gelators: A Supramolecular Synthon Approach, Soft Matter, 7, 3634– 3641 (2011).

b) P. Sahoo, N. N. Adarsh, G. E. Chacko, S. R. Raghavan, V. G. Puranik and P. Dastidar, Combinatorial Library of Primaryalkylammonium Dicarboxylate Gelators: A Supramolecular Synthon Approach, Langmuir, 25, 8742– 8750 (2009).

a) D. R. Trivedi, A. Ballabh and P. Dastidar, Facile Peparation and Structure–property Correlation of Low Molecular Mass Organic Gelators Derived from Simple Organic Salts, J. Mater. Chem., 15, 2606–2614 (2005).

b) P. Sahoo, R. Sankolli, H.-Y. Lee, S. R. Raghavan, and P. Dastidar, Gel Sculpture: Moldable, Load-Bearing and Self-Healing Non-Polymeric Supramolecular Gel Derived from a Simple Organic Salt, Chem. Eur. J., 18, 8057–8063 (2012).

a) D. R. Trivedi, A. Ballabh and P. Dastidar, Noncovalent Syntheses of Supramolecular Organo Gelators, Crystal Growth & Design, 6, 763–768 (2006).

b) P. Sahoo and P. Dastidar, Secondary Ammonium Dicarboxylate (SAD): A Supramolecular Synthon in Designing Low Molecular Weight Gelators Derived from Azo-Dicarboxylates, Cryst. Growth Des., 12, 5917−5924 (2012).

D. R. Trivedi and P. Dastidar, Instant Gelation of Various Organic Fluids Including Petrol at Room Temperature by a New Class of Supramolecular Gelators, Chem. Mater., 18, 1470–1478 (2006).

U. K. Das, S. Banerjee and P. Dastidar, Primary Ammonium Monocarboxylate Synthon in Designing Supramolecular Gels: A New Series of Chiral Low- Molecular-Weight Gelators Derived from Simple Organic Salts that are Capable of Generating and Stabilizing Gold Nanoparticles, Chem. Asian J., 8, 3022–3031 (2013).

A. Ballabh, D. R. Trivedi and P. Dastidar, From Nonfunctional

Lamellae to Functional Nanotubes, Org. Lett., 8, 1271–1274 (2006).

D. R. Trivedi, A. Ballabh, P. Dastidar and B. Ganguly, Structure-Property Correlation of a New Family of Organogelators Based on Organic Salts and their Selective Gelation of Oil from Oil/Water Mixtures, Chem. Eur. J., 10, 5311–5322 (2004).

P. Sahoo, D. K. Kumar, D. R. Trivedi, and P. Dastidar, An Easy Access to an Organometallic Low Molecular Weight Gelator: A Crystal Engineering Approach, Tetrahedron Lett., 49, 3052–3055 (2008).

a) A. Y-Y. Tam, K. M-C. Wong, G. Wang and V. W-W. Yam, Luminescent Metallogels of Platinum(II) Terpyridyl Complexes: Interplay of Metal…Metal, π–π and Hydrophobic-Hydrophobic Interactions on Gel Formation, Chem. Commun., 2028–2030 (2007).

b) S-T. Lam, G. Wang and V. W-W. Yam, Luminescent Metallogels of Alkynylrhenium(I) Tricarbonyl Diimine Complexes, Organometallics, 27, 4545–4548 (2008).

c) L. Yang, L. Luo, S. Zhang, X. Su, J. Lan, C-T. Chen and J. You, Self-assembly from Metal-Organic Vesicles to Globular Networks: Metallogel-Mediated Phenylation of Indole with Phenyl Boronic Acid, Chem. Commun., 46, 3938–3940 (2010).

a) Y. Liu, T. Wang and M. Liu, Supramolecular Polymer Hydrogels from Bolaamphiphilic l-Histidine and Benzene Dicarboxylic Acids: Thixotropy and Significant Enhancement of EuIII Fluorescence, Chem. Eur. J., 18, 14650–14659 (2012).

b) K. Liu, N. Yan, J. Peng, J. Liu, Q. Zhang, and Y. Fang, Supramolecular gels based on organic diacid monoamides of cholesteryl glycinate, Journal of Colloid and Interface Science, 327, 233–242 (2008).

c) S. H. Jung, H. Lee, S. Park and J. H. Jung, A cyanurate gel derived from two different hydrogen-bonding interactions in a binary system: evidence for the driving forces in gel formation, New J. Chem., 36, 1957–1960 (2012).

d) W. Edwards and D. K. Smith, Dynamic Evolving Two- Component Supramolecular Gels-Hierarchical Control over Component Selection in Complex Mixtures, J. Am. Chem. Soc., 135, 5911–5920 (2013).

e) M. Suzuki, H. Saito, H. Shirai and K. Hanabusa, Supramolecular organogel formation triggered by acid–base interaction in two-component system consisting of L-lysine derivative and aliphatic acids, New J. Chem., 31, 1654–1660 (2007).

f) T. Tani, K. Sada, M. Ayabe, Y. Iwashita, T. Kishida, M. Shirakawa, N. Fujita, and S. Shinkai, X-ray Crystallographic Study of Alkylammonium Anthracene-9- carboxylates as a Model for Fibrous Structure of Binary Anthracene Salt Gels, Collect. Czech. Chem. Commun., 69, 1292–1300 (2004).

A. Pal, H. Basit, S. Sen, V. K. Aswal and S. Bhattacharya, Structure and Properties of Two Component Hydrogels Comprising Lithocholic Acid and Organic Amines, J. Mater. Chem., 19, 4325–4334 (2009).

S. Bhattacharya and Y. Krishnan-Ghosh, First Report of Phase Selective Gelation of Oil from Oil/Water Mixtures. Possible Implications Toward Containing Oil Spills, Chem. Commun., 185–186 (2001).

D. R. Trivedi, A. Ballabh and P. Dastidar, An Easy to Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/ Water Mixtures, Chem. Mater., 15, 3971–3973 (2003).

S. R. Jadhav, P. K. Vemula, R. Kumar, S. R. Raghavan and G. John, Sugar-Derived Phase-Selective Molecular Gelators as Model Solidifiers for Oil Spills, Angew. Chem. Int. Ed., 49, 7695–7698 (2010).

B. Escuder, F. Rodrguez-Llansola, J. F. Miravet, Supramolecular Gels as Active Media for Organic Reactions and Catalysis. New J. Chem., 34, 1044–1054 (2010).

A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, and S. J. George, Molecular Wire Encapsulated into π-Organogels: Efficient Supramolecular Light-Harvesting Antennae with Color-Tunable Emission, Angew. Chem. Int. Ed., 46, 6260–6265 (2007).

a) P. Sahoo, D. K. Kumar, S. R. Raghavan and P. Dastidar, Supramolecular Synthons in Designing Low Molecular Mass Gelling Agents: L-Amino Acid Methyl Ester Cinnamate Salts and their Anti-Solvent-Induced Instant Gelation, Chem. Asian J., 6, 1038–1047 (2011).

b) D. Bhagat, S. K. Samanta and S. Bhattacharya, Efficient Management of Fruit Pests by Pheromone Nanogels, Scientific Reports, 3:1294 (2013).

P. Baglioni, L. Dei, E. Carretti and R. Giorgi, Gels for the Conservation of Cultural Heritage, Langmuir, 25, 8373–8374 (2009).

Z. Yang, G. Liang, L. Wang, and B. Xu, Using a Kinase/ Phosphatase Switch to Regulate a Supramolecular Hydrogel and Forming the Supramolecular Hydrogel in Vivo, J. Am. Chem. Soc., 128, 3038–3043 (2006).

a) K. J. C. van Bommel, A. Friggeri and S. Shinkai, Organic Templates for the Generation of Inorganic Materials, Angew. Chem. Int. Ed., 42, 980–999 (2003).

b) S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai and K. Hanabusa, Preparation of Helical Transition-Metal Oxide Tubes Using Organogelators as Structure-Directing Agents, J. Am. Chem. Soc., 124, 6550–6551 (2002).

c) L. C. Palmer and S. I. Stupp, Molecular Self-Assembly into One-Dimensional Nanostructures, Acc. Chem. Res., 41, 1674–1684 (2008).

C. S. Love, V. Chechik, D. K. Smith, K. Wilson, I. Ashworth and C. Brennan, Synthesis of Gold Nanoparticles Within a Supramolecular Gel-phase Network, Chem. Commun., 1971–1973 (2005).

Z. Yang, G. Liang, M. Ma, A. S. Abbah, W. W. Luc and B. Xu, D-Glucosamine-based Supramolecular Hydrogels to Improve Wound Healing, Chem. Commun., 843–845 (2007).

J. Majumder, M. R. Das, J. Deb, S. S. Jana and P. Dastidar, β‑Amino Acid and Amino-Alcohol Conjugation of a Nonsteroidal Anti-Inflammatory Drug (NSAID) Imparts Hydrogelation Displaying Remarkable Biostability, Biocompatibility, and Anti-Inflammatory Properties, Langmuir, 29, 10254−10263 (2013).


Refbacks

  • There are currently no refbacks.