Engineering of Lattice Inclusion Based on Dimer Synthon-Mediated Hierarchical Self-Assembly of Carboxylic Acids

Alankriti Bajpai, M S Krishna, Jarugu Narasimha Moorthy

Abstract


The macroscopic properties of organic solids are largely dictated
by organization of the constituent molecules in the crystal lattice. It is thus possible to control bulk properties of organic solids in a bottom-up approach by programming the constituent molecules to undergo self assembly in a specific fashion. Molecular recognition lies at the heart of lattice inclusion chemistry, and the study of lattice inclusion compounds allows in-depth insights into the fundamental aspects of host-guest chemistry. The phenomenon of lattice inclusion of guests as the functional property of solids, we have attempted to demonstrate how molecular building blocks with certain geometric disposition of COOH groups permits their  selfassembly via the acid dimer synthon into hierarchical 0- to 3-dimensional superstructures that accommodate guests in the crystal lattice.

Full Text:

PDF

References


Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; VCH Publishers: Weinheim, 1995.

Lawerence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95,

Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Ed.;

Wiley: New York, 2009.

Etter, M. C. Acc. Chem. Res. 1990, 23, 120.

Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford

University Press: Oxford, 1997.

Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in

Structural Chemistry and Biology; Oxford University Press:

Oxford, 1999.

Desiraju, G. R. Crystal Engineering: The Design of Organic

Solids; Elsevier: Amsterdam, The Netherlands, 1989.

Braga, D.; Orpan, A. G. Crystal Engineering: From Molecules

and Crystals to Materials; NATO ASI Series: Kluwer,

Dordecht, The Netherlands, 1999.

Bishop, R. In Supramolecular Chemistry: From Molecules

to Nanomaterials; Wiley: Chichester, 2012, 3033.

Bishop, R. Chem. Soc. Rev.1996, 311.

Bishop, R. Aust. J. Chem. 2012, 65, 1361 and references

therein.

Nassimbeni. L. R. Acc. Chem. Res. 2002, 36, 631.

Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34, 2311.

For example, see: Adalder, T. K.; Sankolli, R.; Dastidar, P.

Cryst. Growth Des. 2012, 12, 2553.

Shattock, T. R.; Arora, K. K.; Vishweshwar, P.; Zaworotko,

M. J. Cryst. Growth Des. 2008, 8, 4533.

Moorthy, J. N.; Natarajan, P. J. Mol. Struct. 2008, 885, 139.

Moorthy, J. N.; Natarajan, R.; Mal, P.; Venugopalan, P.

J. Am. Chem. Soc. 2002, 124, 6530.

Das, D.; Desiraju, G. R. Chem. Asian J. 2006, 1, 231.

Ivasenko, O.; Perepichka, D. F. Chem. Soc. Rev. 2011, 40,

Jetty, R. K. R.; Xue, F.; Mak, T. C. W.; Nangia, A. J. Chem.

Soc., Perkin Trans. 2 2000, 1223.

Molecular Inclusion and Molecular Recognition-

Clathrates

I and II, ed. E. Weber, in Topics in Current

Chemistry, Springer-Verlag Berlin, Heidelberg, 1987 and

, vols. 140 and 149.

Csoregh, I.; Sjogren, A.; Czugler, M.; Cserzo, M.; Weber, E.

J. Chem. Soc., Perkin Trans. 2 1986, 507.

Beketov, K.; Weber, E.; Seidel, J.; Kohnke, K.; Makhkamov,

K.; Ibragimov, B. Chem. Commun. 1999, 91.

Ermer, O.; Neudörfl, J. Chem. −Eur. J. 2001, 7, 4961.

Bailey, M.; Brown, C.J. Acta Cryst. 1967, 22, 387.

Dang, H.; Maris, T.; Yi, J. -H.; Rosei, F.; Nanci, A.; Wuest, J.

D. Langmuir 2007, 23, 11980.

Kuppers, H. Cryst. Struct. Commun. 1981, B10, 989.

Derissen, J. L. Acta Cryst. 1974, B30, 2764.

Xu, X.-B.; Lan, F.-F.; Yang, S.-Y.; Huang, R.-B.; Ng, S. W.

Acta Crystallogr. Sect. E: Struct. Rep. Online 2007, 63,

o3747.

Martuscelli, E.; Pedone, C. Acta Crystallogr. Sect. B: Struct.

Crystallogr. Cryst. Chem. 1968, 24, 175.

Duchamp, D. J.; Marsh, R. E. Acta Crystallogr. Sect. B 1969,

, 5.

Herbstein, F. H.; Kapon, M.; Reisner, G. M. J. Inclusion

Phenom. 1987, 5, 211.

Ermer, O.; Neudörfl, J. Helv. Chim. Acta 2001, 84, 1268.

Bajpai, A.; Venugopalan, P.; Moorthy, J. N. Cryst. Growth

Des. 2013, 13, 4721.

Bajpai, A.; Venugopalan, P.; Moorthy, J. N. Unpublished

Results.

Weber, E.; Hecker, M.; Koepp, E.; Orlia, W. J. Chem. Soc.

Perkin Trans. 2 1988, 1251.

Vassiliki, V.; Pistolis, G.; Michaelides, A.; Varvounis, G.;

Sisko, M.; Bouko, N.; Skoulika, S. Cryst. Growth Des. 2006,

, 2486.

Bhogala, B. R.; Nangia, A. Cryst. Growth Des. 2006, 6, 32.

Clews, P. K.; Douthwaite, R. E.; Kariuki, B. M.; Moore, T.;

Taboada, M. Cryst. Growth Des. 2006, 6, 1991.

Kobayashi, K.; Shirasaka, T.; Horn, E.; Furukawa, N. Tetrahedron

Lett. 2000, 41, 89.

Ermer, O. J. Am. Chem. Soc. 1988, 110, 3747.

Ermer, O.; Lindenberg, L. Helv. Chim. Acta 1991, 74, 825.

Wuest, J. D. Chem. Commun. 2005, 5838 and references

therein.

Thaimattam, R.; Xue, F.; Sarma, J. A. R. P.; Mak, T. C. W.;

Desiraju, G. R. J. Am. Chem. Soc. 2001, 123, 4432.

Duong, A.; Dubois, M. A.; Maris, T.; Metivaud, V.; Yi, J.

H.; Nanci, A.; Rochefort, A.; Wuest, J. D. J. Phys. Chem. C

, 115, 12908.

Bajpai, A.; Natarajan, P.; Venugopalan, P.; Moorthy, J. N.

J. Org. Chem. 2012, 77, 7858.


Refbacks

  • There are currently no refbacks.