Pharmaceutical Co-Crystals: A New Paradigm of Crystal Engineering
Abstract
Keywords
Full Text:
PDFReferences
R. Pepinsky, “Crystal Engineering: New Concepts in Crystallography”,
Phys. Rev. 1955, 100, pp. 971–971.
G.M. Schmidt, “Photodimerization in the Solid State”,
J. Pure Appl. Chem. 1971, 27, pp. 647–678.
J.M. Thomas, “Diffusionless reactions and crystal engineering”,
Nature 1981, 289, pp. 633–634.
L. Addadi, M. Lahav, “Towards the planning and execution
of an “absolute” asymmetric synthesis of chiral dimers
and polymers with quantitative enantiomeric yield”,
J. Pure Appl. Chem. 1979, 51, pp. 1269–1284.
G. Wegner, “Topochemische Reaktionen von Monomeren
mit konjugierten Dreifachbindungen I. Mitt.: Polymerisation
von Derivaten des 2.4-Hexadiin-1.6diols im kristallinen
Zustand”, Z. Naturforsch. B 1969, 24, pp. 824–832.
G.R. Desiraju, “Crystal Engineering. The Design of Organic
Solids”, Elsevier, Amsterdam, 1989.
(a) P. Brunet, M. Simard, J.D. Wuest, “Molecular Tectonics.
Porous Hydrogen-Bonded Networks with Unprecedented
Structural Integrity”, J. Am. Chem. Soc. 1997,
, pp. 2737–2738.
(b) M.T. McBride, T.J.M. Luo, G.T.R. Palmore, “Hydrogen-
Bonding Interactions in Crystalline Solids of Cyclic
Thioureas”, Cryst. Growth Des. 2001, 1, pp. 39–46.
(c) K.T. Holman, A.M. Pivovar, M.D. Ward, “Engineering
Crystal Symmetry and Polar Order in Molecular Host
Frameworks”, Science, 2001, 294, pp. 1907–1911.
(d) B.Q. Ma, P. Coppens, “Symmetry Mismatching as a
Tool in the Synthesis of Complex Supramolecular
Solids with Multiple Cavities”, Cryst. Growth Des.
, 4, pp. 211–213.
(e) S. George, S. Lipstman, I. Goldberg, “Porphyrin
Supramolecular Solids Assembled with the Aid of
Lanthanide Ions”, Cryst. Growth Des. 2006, 6, pp.
–2654.
(f) M. Ruben, D. Payer, A. Landa, C. Comicso, N. Lin,
J.P. Collin, J.P. Sauvage, A. De Vitto, K. Kern, “2D
Supramolecular Assemblies of Benzene-1,3,5-triyltribenzoic
Acid: Temperature-Induced Phase Transformations
and Hierarchical Organization with
Macrocyclic Molecules”, J. Am. Chem. Soc. 2006, 128,
pp. 15644–15651.
(g) M.G. Siskos, A. Michaelides, A.K. Zarkadis, N.I. Tzerpos,
S. Skoulika, “Structural Diversity in a Family of
Quasi-Tetrahedral Organic Molecules: From Van Der
Waals Solids to Helices and Molecular Complexes”,
Cryst. Growth Des. 2008, 8, pp. 1966–1971.
(h) S. Mahapatra, K.N. Venugopala, T.N. Guru Row, “A
Device to Crystallize Organic Solids: Structure of
Ciprofloxacin, Midazolam, and Ofloxacin as Targets”,
Cryst. Growth Des. 2010, 10, pp. 1866–1870.
(i) W. Jones, C.N.R. Rao, “Supramolecular Organization
and Materials Design”, Eds.; University Press: Cambridge,
(j) W. Jones, “Organic Molecular Solids: Properties and
Applications”, Ed.; CRC Press: Boca Raton, FL, 1997.
(a) Y.P. He, Y. Tan, J. Zhang, “Stable Mg Metal–Organic
Framework (MOF) and Unstable Zn-MOF Based on
Nanosized Tris ((4-carboxyl) phenylduryl) amine Ligand”,
Cryst. Growth Des. 2013, 13, pp. 6–9.
(b) L. Li, S. Zhang, L. Han, Z. Sun, J. Luo, M. Hong, “A
Non-Centrosymmetric Dual-Emissive Metal–Organic
Framework with Distinct Nonlinear Optical and Tunable
Photoluminescence Properties”, Cryst. Growth
Des. 2013, 13, pp. 106–110.
(c) P. Mahata, C.M. Draznieks, P. Roy, S. Natarajan,
“Solid State and Solution Mediated Multistep
Sequential Transformations in Metal–Organic Coordination
Networks”, Cryst. Growth Des. 2013, 13, pp.
–168.
(d) M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, “Hydrogen
storage in metal–organic frameworks”, Chem. Rev.
, 112, pp. 782–835.
(e) J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu,
“Progress in adsorption based CO2 capture by metal–
organic frameworks”, J. Chem. Soc. Rev. 2012, 41, pp.
–2322.
(f) H.L. Jiang, D.W. Feng, T.F. Liu, J.R Li, H.C. Zhou,
“Pore Surface Engineering with Controlled Loadings
of Functional Groups via Click Chemistry in Highly
Stable Metal–Organic Frameworks”, J. Am. Chem. Soc.
, 134, pp. 14690–14693.
(g) M. Yoon, R. Srirambalaji, K. Kim, “Homochiral Metal–
Organic Frameworks for Asymmetric Heterogeneous
Catalysis”, Chem. Rev. 2012, 112, pp. 1196–1231.
(h) Y.Q. Lan, S.L. Li, H.L. Jiang, Q. Xu, “Tailor-made
metal–organic frameworks from functionalized
molecular building blocks and length-adjustable
organic linkers by stepwise synthesis”, Chem. Eur. J.
, 18, pp. 8076–8083.
(i) Y. Cui, Y. Yue, G. Qian, B. Chen, “Luminescent functional
metal–organic frameworks”, Chem. Rev. 2012,
, pp. 1126–1162.
(j) J. ejka, (ed.) “Metal–Organic Frameworks Applications
from Catalysis to Gas Storage”, Wiley-VCH, Weinheim,
, pp. 392.
(k) Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian,
H. Zhang, M. O’Keeffe, B. Chen, “A robust near infrared
luminescent ytterbium metal–organic framework
for sensing of small molecules”, Chem. Commun. 2011,
, pp. 5551–5553.
(l) D. Han, F.L. Jiang, M.Y. Wu, L. Chen, Q.H. Chen, M.C.
Hong, “A non-interpenetrated porous metal–organic
framework with high gas-uptake capacity”, Chem.
Commun. 2011, 47, pp. 9861–9863.
(m) A.U. Czaja, N. Trukhan, U. Müller, “Industrial applications
of metal–organic frameworks”, Chem. Soc.
Rev. 2009, 38, pp. 1284–1293.
(n) P. Mahata, S. Natarajan, “Metal–organic framework
structures—how closely are they related to classical
inorganic structures?”, Chem. Soc. Rev. 2009, 38,
pp. 2304–2318.
(o) D.J. Tranchemontagne, J.L. Mendoza-Cortés, M.
O’Keefe, O.M. Yaghi, “Secondary building units, nets
and bonding in the chemistry of metal–organic frameworks”,
Chem. Soc. Rev. 2009, 38, pp. 1257–1283.
(p) L.Q. Ma, C. Abney, W.B. Lin, “Enantioselective catalysis
with homochiral metal–organic frameworks”,
Chem. Soc. Rev. 2009, 38, pp. 1248–1256.
(q) L.R. MacGillivray, G.S. Papaefstathiou, T. Friscic,
“Supramolecular control of reactivity in the solid
state: from templates to ladderanes to metal–organic
frameworks”, Acc. Chem. Res. 2008, 41, pp. 280–291.
(r) M. Dinc , J.R. Long, “Hydrogen storage in micro
porous metal–organic frameworks with exposed metal
sites”, Angewandte Chemie International Edition 2008,
, pp. 6766–6779.
(s) R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa,
M. O’Keeffe, O.M. Yaghi, “High-Throughput
Synthesis of Zeolitic Imidazolate Frameworks and
Application to CO2 Capture”, Science 2008, 319, pp.
–943.
(t) D.K. Bu ar, G.S. Papaefstathiou, T.D. Hamilton, Q.L.
Chu, I.G. Georgiev, L.R. MacGillivray, “Template-controlled
reactivity in the organic solid state by principles
of coordination-driven self-assembly”, Eur. J. Inorg.
Chem. 2007, 29, pp. 4559–4568.
(u) E.R. Parnham, R.E. Morris, “Ionothermal Synthesis
of Zeolites, Metal–Organic Frameworks, and Inorganic-
Organic Hybrids”, Acc. Chem. Res. 2007, 40,
pp. 1005–1013.
(v) C.A. Bauer, T.V. Timofeeva, T.B. Settersten, B.D. Patterson,
V.H. Liu, B.A. Simmons, M.D. Allendorf, “Influence
of connectivity and porosity on ligand-based
luminescence in zinc metal–organic frameworks”,
J. Am. Chem. Soc. 2007, 129, pp. 7136–7144.
(w) S.M. Hawxwell, G.M. Espallargas, D. Bradshaw,
M.J. Rosseinky, T.J. Prior, A.J. Florence, J.V.S. Streek,
L. Brammer, “Ligand flexibility and framework
rearrangement in a new family of porous metal–
organic frameworks”, Chem. Commun. 2007, pp.
–1534.
(x) D.F. Sun, Y.X. Ke, T.M. Mattox, S. Parkin, H.C. Zhou,
“Stability and Porosity Enhancement through Concurrent
Ligand Extension and Secondary Building
Unit Stabilization”, Inorg. Chem. 2006, 45, pp.
–7568.
(y) A.K. Cheetham, C.N.R. Rao, R.K. Feller, “Structural
diversity and chemical trends in hybrid inorganicorganic
framework materials”, Chem. Comm. 2006,
pp. 4780–4795.
(z) B.L. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M.
Yaghi, “Interwoven Metal–Organic Framework on a
Periodic Minimal Surface with Extra-Large Pores”,
Science. 2001, 29, pp. 1021–1023.
(a) G.R. Desiraju, “The Crystal as a Supramolecular Entity.
Perspectives in Supramolecular Chemistry”, Vol. 2;
John Wiley & Sons: New York, 1996.
(b) J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle,
J.M. Lehn, Eds., “Crystal Engineering in Comprehensive
Supramolecular Chemistry”, Vol.6; Pergamon: Oxford,
(c) D. Braga, A.G. Orpen, Eds., “Crystal Engineering: From
Molecules and Crystals to Materials”, NATO ASI Series
Kluwer: Dordecht, Netherlands, 1999.
(d) J.A.R.P. Sarma, G.R. Desiraju, “The novel 1:1
donor–acceptor complex, 3,4-dimethoxycinnamic
acid–2,4-dinitrocinnamic acid. Crystal engineering,
structure, and anomalous lack of solid-state
topochemical reactivity”, J. Chem. Soc., Perkin Trans.
II, 1985, pp. 1905–1912.
(e) C.V.K. Sharma, K. Panneerselvam, L. Shimoni, H. Katz,
H.L. Carrell, G.R. Desiraju, “3-(3′,5′-Dinitrophenyl)-
-(2′,5′-dimethoxyphenyl)cyclobutane-1,2-dicarboxylic
Acid: Engineered Topochemical Synthesis and
Molecular and Supramolecular Properties”, Chem.
Mater. 1994, 6, pp. 1282–1292.
(f) B.M. Foxman, M.J. Vela, “Reactive Crystals: Design and
Discovery”, Transactions ACA 1998, 33, pp. 75–84.
(g) J. Xiao, M. Yang, J.W. Lauher, F.W. Fowler, “A
Supramolecular
Solution to a Long-Standing Problem:
The 1,6-Polymerization of a Triacetylene”, Angew.
Chem., Int. Ed. Engl. 2000, 39, pp. 2132–2135.
(h) J. Hulliger, H. Bebie, S. Kluge, A. Quintel, “Growth-
Induced Evolution of Polarity in Organic Crystals”,
Chem. Mater. 2002, 14, pp. 1523–1529.
F. Wohler, “Untersuchungen über des chinons.” Annalen
Chem. Pharm. 1844, 51, pp. 145–163.
(a) P. Pfeiffer, “Organische Molekül Verbindungen”, 2nd
ed.; Ferdinand Enke: Stuttgart, 1927.
(b) R. Foster, “Organic Charge-Transfer Complexes”, Academic:
London, 1969.
(c) F.H. Herbstein, “Crystalline Molecular Complexes and
Compounds”, Oxford University Press: Oxford, 2005;
Vols. 1 and 2.
(d) J. Bernstein, H. Regev, F.H. Herbstein, “Molecular
compounds and complexes. The ternary chargetransfer
salt pyridinium-1-naphthylamine-picrate
(Kofler’s ternary complex)”, Acta. Crystallogr.
Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 36,
pp. 1170–1175.
(e) D.E. Lynch, G. Smith, K.A. Byriel, C.H.L. Kennard, “The
unique occurrence of tri-heteromolecular adduct:
the crystal structure of the (3:1:1) 4-Aminobenzoic
acid–2,4,6-trinitrobenzoic acid-1,3,5-trinitrobenzene
cocrystal”, Chem. Commun. 1992, pp. 300–301.
(f) T. Smolka, R. Boese, R. Sustmann, “Design of a three
Component Crystal based on the Cocrystal of Phenazine
and 2, 2´-Dihydroxybiphenyl”,
Struct. Chem.
, 10, pp. 429–431.
(g) C.B. Aakeröy, A.M. Beatty, B.A. Helfrich, “Total synthesis’
supramolecular style: Design and hydrogenbond
directed assembly of ternary cocrystals”, Angew.
Chem., Int. Ed. 2001, 40, pp. 3240–3242.
(h) B.R. Bhogala, S. Basavoju, A. Nangia, “Tape and layer
structures in cocrystals of some di- and tricarboxylic
acids with 4,4′-bipyridines and isonicotinamide. From
binary to ternary cocrystals”, CrystEngComm. 2005, 7,
pp. 551–562.
(i) B.R. Bhogala, S. Basavoju, A. Nangia, “Three-Component
Carboxylic Acid–Bipyridine Lattice Inclusion
Host. Supramolecular Synthesis of Ternary Cocrystals”,
Cryst. Growth Des. 2005, 5, pp. 1683–1686.
(j) C.B. Aakeröy, J. Desper, E. Elisabeth, B.A. Helfrich,
B. Levin, J.F. Urbina, “Making reversible synthesis
stick: Competition and cooperation between intermolecular
interactions”, Z. Kristallogr. 2005, 220, pp.
–332.
(k) C.B. Aakeröy, J. Desper, J.F. Urbina, “Supramolecular
Reagents: Versatile Tools for Non-covalent Synthesis”,
Chem. Commun. 2005, pp. 2820–2822.
(l) C.B. Aakeröy, D.J. Salmon, “Building co-crystals with
molecular sense and supramolecular sensibility”, CrystEngComm
, 7, pp. 439–448.
(m) T. Fricic, A.V. Trask, W. Jones, W.D.S. Motherwell,
“Screening for inclusion compounds and systematic
construction of three-component solids by liquidassisted
grinding”, Angew. Chem. Int. Ed. 2006, 45,
pp. 7546–7550.
(a) J.A. Zerkowski, C.T. Seto, G.M. Whitesides, “Solidstate
structures of ‘Rosette’ and ‘Crinkled Tape’ motifs
derived from the cyanuric acid melamine lattice”,
J. Am. Chem. Soc. 1992, 114, pp. 5473–5475.
(b) Ö. Almarsson, M.J. Zaworotko, “Crystal engineering
of the composition of pharmaceutical phases.
Do pharmaceutical co-crystals represent a new path
to improved medicines?” Chem. Commun. 2004, 17,
pp. 1889–1896.
(c) B. Rodriguez-Spong, C.P. Price, A. Jayasankar, A.J.
Matzger, N. Rodrı’guez-Hornedo, “General principles
of pharmaceutical solid polymorphism: a supramolecular
perspective”, Adv. Drug Delivery Rev. 2004,
, pp. 241–274.
(d) N. Blagden, M.de Matas, P.T. Gavan, P. York, “Crystal
engineering of active pharmaceutical ingredients to
improve solubility and dissolution rates”, Adv. Drug.
Delivery Rev. 2007, 59, pp. 617–630.
S. Aitipamula, R. Banerjee, A.K. Bansal, K. Biradha, M.L.
Cheney, A.R. Choudhury, G.R. Desiraju, A.G. Dikundwar,
R. Dubey, N. Duggirala, P.P. Ghogale, S. Ghosh, K.
Goswami, N.R. Goud, R.R.K.R. Jetti, P. Karpinski, P.
Kaushik, D. Kumar, V. Kumar, B. Moulton, A. Mukherjee,
G. Mukherjee, A.S. Myerson, V. Puri, A. Ramanan, T.
Rajamannar, C.M. Reddy, N. Rodriguez-Hornedo, R.D.
Rogers, T.N. Guru Row, P. Sanphui, N. Shan, G. Shete, A.
Singh, C.C. Sun, J.A. Swift, R. Thaimattam, T.S. Thakur,
R.K. Thaper, S.P. Thomas, S. Tothadi, V.R. Vangala, N.
Variankaval, P. Vishweshwar, D.R. Weyna, M.J. Zaworotko,
“Polymorphs, Salts, and Cocrystals: What’s in a Name?”,
Cryst. Growth Des. 2012, 12, pp. 2147–2152. (References
therein)
(a) J.D. Dunitz, “Crystal and co-crystal: a second opinion”,
CrystEngComm 2003, 5, pp. 506–506.
(b) G.R. Desiraju, “Crystal and co-crystal”, CrystEngComm
, 5, pp. 466–467.
(c) P. Vishweshwar, J.A. McMahom, J.A. Bis, M.J.
Zaworotko, “Pharmaceutical co-crystals”, J. Pharm.
Sci. 2006, 9, pp. 499–516.
(d) C.B. Aakeröy, M.E. Fasulo, J. Desper, “Cocrystal or
salt: does it really matter?” Mol. Pharm. 2007, 4,
pp. 317–322.
(e) S.L. Childs, G.P. Stahly, A. Park, “The salt-cocrystal
continuum: the influence of crystal structure on ionization
state”, Mol. Pharm. 2007, 4, pp. 323–338.
(f) F. Lara-Ochoa, G. Espinosa-Pérez, “Crystals and Patents”,
Cryst. Growth Des. 2007, 7, pp. 1213–1215.
(g) J.Z. Schpector, E.R.T. Tiekink, “What is a Co-crystal?”,
Z. Kristallogr. 2008, 223, pp. 233–234.
FDA Challenges and Opportunity on the Critical Path to
New Medical Products. http://www.fda.gov/oc/initiatives/
criticalpath/whitepaper.html#innovation
J.A. DiMasi, R.W. Hansen, H.G. Grabowski, “The price
of innovation: new estimates of drug development costs”,
Journal of Health Economics, 2003, 22, pp. 151–185.
(a) J. Bernstein, “Polymorphism in Molecular Crystals”,
Clarendon, Oxford, 2002.
(b) R.J. Davey, “Pizzas, Polymorphs and pills”, Chem.
Commun. 2003, 13, pp. 1463–1467.
(c) A. Llinás, J.M. Goodman, “Polymorph control: past,
present and future”, Drug Discovery Today, 2008 13,
pp. 5–6.
(d) M. Kitamura, “Strategy for control of crystallization
of polymorphs” CrystEngComm, 2009, 11, pp.
–964.
(e) C.B. Aakeröy, N.R. Champness, C. Janiak, “Recent
advances in crystal engineering”, CrystEngComm,
, 12, pp. 22–43.
(a) K.R. Seddon, “Pseudopolymorph: A polemic”, Cryst.
Growth Des. 2004, 4, pp. 1087.
(b) G.R. Desiraju, “Counterpoint: What’s in a Name?”
Cryst. Growth Des. 2004, 4, pp. 1089–1090.
(c) J. Bernstein, “And another comment on pseudopolymorphism”,
Cryst. Growth Des. 2005, 5, pp.
–1662.
(d) A. Nangia, “Pseudopolymorph: retain this widely
accepted term”, Cryst. Growth Des. 2005, 6, pp. 2–4.
(a) H.G. Brittain, E.F. Fiese, “Effect of pharmaceutical
processing on drug polymorphs and solvates. In Polymorphism
in Pharmaceutical Solids”, H.G. Brittain, Ed.,
Marcel Dekker, Inc. 1999, pp. 331–362.
(b) S.L. Morissette, Ö. Almarsson, M.L. Peterson,
J.F. Remenar, M.J. Read , A.V. Lemmo, S. Ellis , M.J.
Cima, C.R. Gardner, “High-throughput crystallization:
polymorphs, salts, co-crystals and solvates of pharmaceutical solids”, Adv. Drug. Deliv. Rev. 2004,
, pp. 275–300.
R. Thakuria, A. Nangia, “Highly soluble olanzapinium
maleate crystalline salts”, CrystEngComm, 2011, 13,
pp. 1759–1764.
(a) W. Jones, W.D.S. Motherwell, A.V. Trask, “Pharmaceutical
Cocrystals: An Emerging Approach to Physical
Property Enhancement”, MRS Bull. 2006, 31, pp.
–879.
(b) M.K. Stanton, A. Bak, “Physicochemical Properties
of Pharmaceutical Co-Crystals: A Case Study of Ten
AMG 517 Co-Crystals”, Cryst. Growth Des. 2008, 8, pp.
–3862.
(c) N. Shan, M.J. Zaworotko, “The Role of Cocrystals in
Pharmaceutical science”, Drug Discovery Today 2008,
, pp. 440–446.
(a) D.P. McNamara, S.L. Childs , J. Giordano, A. Iarriccio,
J. Cassidy, M.S. Shet, R. Mannion, E. O’Donnell,
A. Park, “Use of a glutaric acid cocrystal to improve
oral bioavailability of a low solubility API”, Pharm. Res.
, 23, pp. 1888–1897.
(b) S. Karki, T. Friš ic, L. Fábián, P.R. Laity, G.M. Day, V.
Jones, “Improving mechanical properties of crystalline
solids by cocrystal formation: New compressible
forms of paracetamol”, Adv Mater. 2009, 21,
pp. 3905–3909.
(c) C.B. Aakeröy, S. Forbes, J. Desper, “Using Cocrystals to
Systematically Modulate Aqueous Solubility and Melting
Behavior of an Anticancer Drug”, J. Am. Chem.
Soc. 2009, 137, pp. 17048–17049.
(d) N. Schultheiss, A. Newman, “Pharmaceutical Cocrystals
and Their Physicochemical Properties”, Cryst.
Growth Des. 2009, 9, pp. 2950–2967.
(e) S.L. Childs, M.J. Zaworotko, “The Reemergence of
Cocrystals: The Crystal Clear Writing is on the Wall,
in Introduction to Virtual Special Issue on Pharmaceutical
Cocrystals”, Cryst. Growth Des. 2009, 9,
pp. 4208–4211.
(f) C.B. Aakeröy, P.D, “Chopade, Cocrystals: Synthesis, Structure,
and Applications in Supramolecular Chemistry: from
Molecules to Nanomaterials”, J.W. Steed and P.A. Gale
(Eds). John Wiley & Sons Ltd., 2012, pp. 2975–2992.
(g) A. Nangia, N.J. Babu, “Solubility advantages of amorphous
drugs and pharmaceutical cocrystals”, Cryst.
Growth Des. 2011, 11, pp. 2662–2679.
A.V. Trask, “An overview of pharmaceutical cocrystals as intellectual
property”, Mol. Pharmaceutics. 2007, 4, pp. 301–309.
(a) G.R. Desiraju, “Chemistry beyond the molecule”,
Nature, 2001, 412, pp. 397–400.
(b) J.M. Lehn, “Toward complex matter: Supramolecular
chemistry and self-organization”, PNAS, 2002, 99, pp.
–4768.
(a) K.R. Seddon, C.B. Aakeröy, “The Hydrogen Bond
and Crystal Engineering”, Chem. Soc. Rev. 1993, 22,
pp. 397–407.
(b) J.W. Steed, J.L. Atwood, “Supramolecular Chemistry”,
nd ed. John Wiley & Sons, Ltd., 2009.
J.W. Steed, J.L. Atwood, “Supramolecular Chemistry”,
nd ed. John Wiley & Sons, Ltd., 2009, pp. 30.
A.I. Kitaigorodskii, “Molecular Crystals and Molecules”,
Academic Press, New York, 1973.
(a) G.R. Desiraju, “Reflections on the Hydrogen Bond
in Crystal Engineering”, Cryst. Growth Des. 2011, 11,
pp. 896–898.
(b) G.R. Desiraju, V. Vittal, A. Ramanan, “Crystal Engineering:
A textbook”, 1st ed., World Scientific, Ltd.,
(c) T.S. Thakur, Y. Azim, T. Srinu, G.R. Desiraju,
“N–H⋅⋅⋅O and C–H⋅⋅⋅O interaction mimicry in the
:1 molecular complexes of 5,5-diethylbarbituric
acid with urea and acetamide”, Curr. Sci., 2010, 98
(6), pp. 793–802.
G.R. Desiraju, “Crystal engineering: A brief overview”,
J. Chem. Sci., 2010, 122 (5), pp. 667–675.
G.R. Desiraju, “Supramolecular synthons in crystal engineering-
a new organic synthesis”, Angew. Chem. Int. Ed.
Engl. 1995, 34, pp. 2311–2327.
M.C. Etter, “Hydrogen bonds as design elements in organic
chemistry”, J. Phys. Chem. 1991, 95, pp. 4610–4618.
M.C. Etter, “Encoding and Decoding Hydrogen-Bond
Patterns of Organic Compounds”, Acc. Chem. Res. 1990,
, pp. 120–126.
F.H. Allen, “The Cambridge Structural Database: a quarter
of a million crystal structures and rising”, Acta Crystallogr.
, B58, pp. 380–388.
J. Devane, “Oral drug delivery technology: Addressing the
solubility/permeability paradigm”, Pharm. Technol. 1998,
, pp. 68–74.
A.M. Thayer, “Finding solutions”, Chem. Eng. News 2010,
, pp. 13–18.
(a) H.S. Gwak, J.S. Choi, H.K. Choi, “Enhanced bioavailability
of piroxicam via salt formation with ethanolamines”,
Int. J. Pharm. 2005, 297, pp. 156–161.
(b) V.M. Rao, M. Nerurkar, S. Pinnamaneni, F. Rinaldi,
K. Raghavan, “Co-solubilization of poorly soluble
drugs by micellization and complexation.” Int.
J. Pharm. 2006, 319, pp. 98–106.
(c) M. Vogt, K. Kunath, J.B. Dressman, “Dissolution
enhancement of fenofibrate by micronization, cogrinding
and spray-drying: comparison with commercial
preparations”, Eur. J. Pharm. Biopharm. 2008, 6, pp.
–288.
(d) H.X. Zhang, J.X. Wang, Z.B. Zhang, Y. Le, Z.G. Shen,
J.F. Chen, “Micronization of atorvastatin calcium by
antisolvent precipitation process”, Int. J. Pharm. 2009,
, pp. 106–111.
(e) Z.B. Zhang, , Z.G. Shen J.X. Wang, H.X. Zhang, H.
Zhao, J.F. Chen, J. Yun, “Micronization of silybin by
the emulsion solvent diffusion method”, Int. J. Pharm.
, 376, pp. 116–122.
(f) N. Seedher, M. Kanojia, “Co-solvent solubilization of
some poorly-soluble antidiabetic drugs”, Pharm. Dev.
Technol. 2009, 14, pp. 185–192.
P. Vishweshwar, J.A. McMahon, J.A. Bis, M.J. Zaworotko,
“Pharmaceutical co-crystals”, J. Pharm. Sci. 2006, 95,
pp. 499–516.
L.D. Bighley, S.M. Berge, D.C. Monkhouse, “Encyclopedia
of Pharmaceutical Technology”, J. Swarbrick, J.C. Boylan,
Eds., Marcel Dekker: New York, 1996, Vol. 13.
P.H. Stahl, C.G. Wermuth, Eds. “Monographs on Acids and
Bases, in Handbook of Pharmaceutical Salts: Properties,
Selection and Use”, Verlag Helvetica Chimica Acta: Zurich,
(a) FDA GRAS notices can be found at www.cfsan.fda.
gov/~dms/eafus.html.
(b) N. Schultheiss, M. Roe, S.X.M. Boerrigter, “Cocrystals
of nutraceutical p-coumaric acid with caffeine
and theophylline: polymorphism and solid-state
stability
explored in detail using their crystal graphs”,
CrystEngComm.
, 13, pp. 611–619.
(c) N. Schultheiss, S. Bethune, J.O. Henck, “Nutraceutical
cocrystals: utilizing pterostilbene as a cocrystal
former”, CrystEngComm. 2010, 12, pp. 2436–2442.
(d) M. Sowa, K. Slepokurab, E.M. Jona, “A 1:1 cocrystal
of baicalein with nicotinamide”, Acta Cryst. 2012,
C68, pp. 262–265.
(e) L. Andreas, B. Joel, “The co-crystal of two GRAS
substances: citric acid and nicotinamide. Formation
of four hydrogen bonding heterosynthons in one
co-crystal”, CrystEngComm, 2010, 12, pp. 2029–2033.
(a) S. Varughese, Y. Azim, G.R. Desiraju, “Molecular complexes
of alprazolam with carboxylic acids, boric acids,
boronic acids and phenols. Evaluation of supramolecular
heterosynthons mediated by triazole ring”,
J. Pharm. Sci., 2010, 99, pp. 3743–3753.
(b) H.G. Brittain, “Pharmaceutical cocrystals: The coming
wave of new drug substances”, J. Pharm. Sci. 2013, 102,
pp. 311–317.
(c) H.G. Brittain, “Cocrystal systems of pharmaceutical
interest: 2010”, Cryst. Growth Des. 2012, 12, pp.
–1054.
(d) H.G. Brittain, “Cocrystal systems of pharmaceutical
interest: 2011”, Cryst. Growth Des. 2012, 12, pp.
–5832.
(e) N. Huang, N. Rodríguez-Hornedo, “Engineering
cocrystal solubility, stability, and pHmax by micellar
solubilization”, J. Pharm. Sci. 2011, 100, pp.
–5234.
(f) M. Majunder, G. Buckton, C. Rawlinson-Malone, A.C.
Williams, M.J. Spillman, N. Shankland, K. Shankland,
“A Carbamazepine- Indomethacin (1:1) Cocrystal
Produced by Milling”, CrystEngComm, 2011, 13,
pp. 6327–6328.
(g) A. Mukherjee, P. Grobelny, T.S. Thakur, G.R. Desiraju,
“Polymorphs, Pseudo-polymorphs, and Cocrystals
of Orcinol: Exploring the Structural Landscape with
High Throughput Crystallography” Cryst. Growth Des.
, 11, pp. 2637–2653.
(h) Z. Rahman, C. Agarabi, A.S. Zidan, S.R. Khan, M.A.
Khan, “Physico-mechanical and stability evaluation
of carbamazepine cocrystal with nicotinamide”, AAPS
PharmSciTech. 2011, 12, pp. 693–704.
(i) M.A. Mohammad, A. Alhalaweh, S.P. Velaga, “Hansen
Solubility Parameter as a Tool to Predict Cocrystal Formation”,
Int. J. Pharm. 2011, 407, pp. 63–71.
(j) J. Wouters, L. Quere, D.E. Thurston, A. Martinez, Eds.
“Pharmaceutical Salts and Co-crystals”, RSC, 2011.
(k) M.A. Elbagerma, H.G.M. Edwards, T. Munshi, M.D.
Hargreaves, P. Matousek, I.J. Scowen, “Characterization
of New Cocrystals by Raman Spectroscopy,
Powder X-ray Diffraction, Differential Scanning
Calorimetry, and Transmission Raman Spectroscopy”,
Cryst. Growth Des. 2010, 10, pp. 2360–2371.
(l) D. Braga, F. Grepioni, L. Maini, P.P. Mazzeo, K. Rubini,
“Solvent-Free Preparation of Cocrystals of Phenazine
and Acridine with Vanillin”, Thermochim. Acta. 2010,
, pp. 1–8.
(m) M. Khan, V. Enkelmann, G. Brunklaus, “Crystal Engineering
of Pharmaceutical Co-crystals: Application
of Methyl Paraben as Molecular Hook”, J. Am. Chem.
Soc. 2010, 132, pp. 5254–5263.
(n) E.R.T. Tiekink, J.J. Vittal, Eds., “Frontiers in Crystal
Engineering”, John Wiley & Sons, Ltd., 2006, pp.
–49.
(a) A.D. Bond, “What is a cocrystal?” Cryst. Eng. Commun.
, 9, pp. 833–834.
(b) K. Seefeldt, J. Miller, F. Alvarez-Nunez, N. Rodriguez-
Hornedo, “Crystallization
pathways and kinetics of
carbamazepine–nicotinamide cocrystals from the
amorphous state by in situ thermomicroscopy, spectroscopy
and calorimetry studies”, J. Pharm. Sci. 2007,
, pp. 1147–1158.
(c) S.L. Reddy, J.N. Babu, A. Nangia, “Carboxamide- pyridine
N-oxide heterosynthon for crystal engineering
and pharmaceutical cocrystals”, Chem. Commun. 2006,
pp. 1369–1371.
(d) B.R. Bhogala, S. Basavoju, A. Nangia, “Three-Component
Carboxylic Acid-Bipyridine Lattice Inclusion
Host. Supramolecular Synthesis of Ternary Cocrystals”,
Cryst. Growth Des. 2005, 5, pp. 1683–1686.
(e) C.B. Aakeröy, D.J. Salmon, “Building Cocrystals with
Molecular Sense and Supramolecular Sensibility”
CrystEngComm 2005, 7, pp. 439–448.
(f) A.V. Trask, J. Van de Streek, S.W.D. Motherwell, W. Jones,
“Achieving Polymorphic and Stoichiometric Diversity
in Cocrystal Formation: Importance of Solid-State
Grinding, Powder X-ray Structure Determination, and
Seeding”, Cryst. Growth. Des. 2005, 6, pp. 2233–2241.
(g) P. Vishweshwar, J.A. McMahon, M.L. Peterson, M.B.
Hickey, T.R. Shattock, M.J. Zaworotko, “Crystal engineering of pharmaceutical cocrystals from polymorphic
active pharmaceutical ingredients”, Chem.
Commun. 2005, pp. 4601–4603
(h) A.V. Trask, W. Jones, “Crystal engineering of organic
cocrystals by the solidstate grinding approach”,
Organic Solid-State Reactions. 2005, 254, pp. 41–70.
(i) M.W. Hosseini, “Reflection on molecular tectonics”,
CrystEngComm 2004, 6, pp. 318–322.
(j) T.R. Shattock, P. Vishweshwar, Z. Wang, M.J.
Zaworotko, “18-Fold Interpenetration and Concomitant
Polymorphism in the 2:3 CoCrystal of
Trimesic Acid and 1,2-Bis(4-pyridyl)ethane”, Cryst.
Growth. Des. 2005, 6, pp. 2046–2049.
(k) C.B. Aakeröy, J. Desper, D.J. Salmon, M.M. Smith,
“Cyanophenyloximes: Reliable and Versatile Tools
for Hydrogen-Bond Directed Supramolecular Synthesis
of Cocrystals”, Cryst. Growth Des. 2006, 4, pp.
–1042.
(l) C.B. Aakeröy, M.E. Fasulo, J. Desper, “Improving success
rate of hydrogen bond driven synthesis of co-crystals”,
CrystEngComm. 2006, 8, pp. 586–588.
(m) G.R. Desiraju, “Crystal and co-crystal”, CrystEngCommun.
, 5, pp. 466–467.
I.D.H. Oswald, D.R. Allan, P.A. McGregor, W.D.S. Motherwell,
S. Parsons, C.R. Pelham, “The formation of paracetamol
(acetaminophen) adducts with hydrogen-bond
acceptors”, Acta Crystallogr. 2002, B58, pp. 1057–1066.
R.D.B. Walsh, M.W. Bradner, S. Fleischman, L.A. Morales,
B. Moulton, N. Rodriguez- Hornedo, M.J. Zaworotko,
“Crystal engineering of the composition of pharmaceutical
phases”, Chem. Commun. 2003, pp. 186–187.
(a) M.L. Cheney, N. Shan, E.R. Healey, M. Hanna, L. Wojtas,
M.J. Zaworotko, V. Sava, S. Song, J.R. Sanchez-Ramos,
“Effects of crystal form on solubility and pharmacokinetics:
a crystal engineering case study of lamotrigine”,
Cryst. Growth Des. 2010, 10, pp. 394–405.
(b) N. Shan, M.J. Zaworotko, “Polymorphic crystal forms
and cocrystals in drug delivery (crystal engineering)”,
In Burger’s Medicinal Chemistry and Drug Discovery
and Development, 2010, pp. 187–218.
(c) A. Alhalaweh, A. Sokolowski, N. Rodríguez-Hornedo,
S.P. Velaga, “Solubility Behavior and Solution Chemistry
of Indomethacin Cocrystals in Organic Solvents”,
Cryst. Growth Des. 2011, 11, pp. 3923–3929.
(d) D.R. Weyna, M.L. Cheney, N. Shan, M. Hanna, M.J.
Zaworotko, V. Sava, S. Song, J.R. Sanchez-Ramos,
“Improving Solubility and Pharmacokinetics of Meloxicam
via Multiple-Component Crystal Formation.”
Mol. Pharmaceutics 2012, 9, pp. 2094–2102.
(e) N.J. Babu, A. Nangia, “Solubility Advantage of Amorphous
Drugs and Pharmaceutical Cocrystals”, Cryst.
Growth Des. 2011, 11, pp. 2662–2679.
(f) D.J. Good, N.R. Hornedo, “Solubility Advantage of
Pharmaceutical Cocrystals”, Cryst. Growth Des. 2009,
(5), pp. 2252–2264.
G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, “A
theoretical basis for a biopharmaceutic drug classification:
The correlation of in vitro drug product dissolution
and in vivo bioavailability”, Pharm. Res. 1995, 12(3), pp.
–420.
A.K. Nair, O. Anand, N. Chun, D.P. Conner, M.U. Mehta,
D.T. Nhu, J.E. Polli, L.X. Yu, B.M. Davit, “Statistics on
BCS Classification of Generic Drug Products Approved
Between 2000 and 2011 in the USA”, AAPS Journal, 2012,
,(4), pp. 664–666.
M. Lindenberg, S. Kopp, J.B. Dressman, “Classification of
orally administered drugs on the World Health Organization
Model list of Essential Medicines according to the
biopharmaceutics classification system”, Eur. J. Pharm.
Sci., 2004, pp. 58, 265–78.
(a) Committee for Medicinal Products for Human Use.
Guidelines on the investigation of Bioequivalence
(CPMP/EWP/QWP/1401/98 Rev. 1) July 2008.
(b) D.J. Birkett, “Generics-Equal or Not?”, Australian Prescriber
26, pp. 85–87.
(a) S. Zhanga, A.C. Rasmuson, “The theophylline–oxalic
acid co-crystal system: solid phases, thermodynamics
and crystallization”, CrystEngComm, 2012, 14, pp.
–4655.
(b) D.K. Bu ar, F.H. Henry, X. Lou, R.W. Duerst, T.B. Borchardt,
L.R. MacGillivray, G.G.Z. Zhang, “Co-Crystals
of Caffeine and Hydroxy-2-naphthoic Acids: Unusual
Formation of the Carboxylic Acid Dimer in the
Presence of a Heterosynthon”, Mol. Pharmaceutics,
, 4, pp. 339–346.
(c) J. Kastelic, N. Lah, D. Kikelj, I. Leban, “A 1:1 Cocrystal
of Fluconazole with Salicylic Acid”, Acta Crystallogr.
, C67, pp. 370–372.
(d) J.F. Remenar, M.L. Peterson, P.W. Stephens, Z. Zhang,
Y. Zimenkov, M.B. Hickey, “Celecoxib : Nicotinamide
Dissociation: Using Excipients to Capture the
Cocrystals Potential”, Mol. Pharmaceutics 2007. 4, pp.
–400.
(e) S.G. Fleischman, S.S. Kuduva, J.A. McMahon,
B. Moulton, R.D.B. Walsh, N.R. Hornedo, M.J.
Zaworotko, “Crystal Engineering of the Composition
of Pharmaceutical Phases: Multiple-Component Crystalline
Solids Involving Carbamazepine”, Cryst. Growth
Des. 2003, 3, pp. 909–919.
(f) L.S. Reddy, S.J. Bethune, J.W. Kampf, N.R. Hornedo,
“Cocrystals and Salts of Gabapentin: pH Dependent
Cocrystal Stability and Solubility”, Cryst. Growth Des.
, 9, pp. 378–385.
(g) V.R. Vangala, P.S. Chow, R.B.H. Tan, “Characterization,
physicochemical and photo-stability of a co-crystal
involving an antibiotic drug, nitrofurantoin, and
-hydroxybenzoic acid”, CrystEngComm, 2011, 13, pp.
–762.
(h) S. Aitipamula, A.B.H. Wong, P.S. Chow, R.B.H. Tan,
“Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies”, CrystEngComm,
, 14, pp. 8515–8524.
(i) R. Chadha, A. Saini, P. Arora, S. Chanda, D.S. Jain,
“Cocrystals of efavirenz with selected coformers: preparation
and characterization”, Int. J. Pharm. Sci. 2012,
, pp. 244–250.
(j) M. Majumder, G. Buckton, C. Rawlinson-Malone, A.C.
Williams, M.J. Spillman, N. Shankland, K. Shankland,
“A Carbamazepine-Indomethacin (1:1) Cocrystal
Produced by Milling”, CrystEngComm 2011, 13,
pp. 6327–6328.
(k) R. Chadha, A. Saini, P. Arora, D.S. Jain, A. Dasgupta,
T.N. Guru Row, “Multicomponent Solids of Lamotrigine
with some Selected Coformers and their Characterization
by Thermoanalytical, Spectroscopic, and
X-Ray Diffraction Methods”, CrystEngComm, 2011,
, pp. 6271–6284.
(l) R.A.E. Castro, J.D.B. Ribeiro, T.M.R. Maria, M.R. Silva,
C. Yeste-Vivas, J. Canotilho, M.E.S. Eusébio, “Naproxen
Cocrystals with Pyridinecarboxamide Isomers”, Cryst.
Growth Des. 2011, 11, pp. 5396–5404.
(m) S. Cherukuvada, N.J. Babu, A. Nangia, “Nitrofurantoin-
p-Aminobenzoic Acid Cocrystal: Hydration
Stability and Dissolution Rate Studies”, J. Pharm. Sci.,
, 100, pp. 3233–3244.
(n) M.A. Elbagerma, H.G.M. Edwards, T. Munshi, I.J. Scowen,
“Identification of a new cocrystal of citric acid
and paracetamol of pharmaceutical relevance”, CrystEngComm,
, 13, pp. 1877–1884.
(o) D.R. Weyna, M.L. Cheney, N. Shan, M. Hanna, L.
Wojtas, M.J. Zaworotko, “Crystal engineering of
multiple-component organic solids: Pharmaceutical
cocrystals of tadalafil with persistent hydrogen
bonding motifs”, CrystEngComm, 2012, 14,
pp. 2377–2380.
S.L. Childs, L.J. Chyall, J.T. Dunlap, V.N. Smolenskaya,
B.C. Stahly, G.P. Stahly, “Crystal Engineering Approach
to Forming Cocrystals of Amine Hydrochlorides with
Organic Acids. Molecular Complexes of Fluoxetine
Hydrochloride with Benzoic, Succinic, and Fumaric Acids”,
J. Am. Chem. Soc. 2004, 126, pp. 13335–13342.
(a) A.V. Trask, W.D.S. Motherwell, W. Jones, “Pharmaceutical
Cocrystallization: Engineering a Remedy for
Caffeine Hydration”, Cryst. Growth Des. 2005, 5, pp.
–1021.
(b) S. Aitipamula, P.S. Chowa, R.B.H. Tan, “Co-crystals of
caffeine and piracetam with 4-hydroxybenzoic acid:
Unravelling the hidden hydrates of 1:1 co-crystals”,
CrystEngComm, 2012, 14, pp. 2381–2385.
(a) A.V. Trask, S.W.D. Motherwell, W. Jones, “Physical stability
enhancement of theophylline via cocrystallization”,
Int. J. of Pharm. 2006, 320, pp. 114–123.
(b) S. Zhanga, A.C. Rasmuson, “The theophylline–oxalic
acid co-crystal system: solid phases, thermodynamics
and crystallization”, CrystEngComm, 2012, 14,
pp. 4644–4655.
S.F. Chow, M. Chen, L. Shi, A.H.L. Chow, C.C. Sun, “Simultaneously
improving stability, mechanical properties,
and dissolution properties of ibuprofen and flurbiprofen
by cocrystallization with nicotinamide”, Pharm. Res. 2012,
, pp. 1854–1865.
M.K. Stanton, A. Bak, “Physicochemical Properties
of Pharmaceutical Co-Crystals: A Case Study of Ten
AMG 517 Co-Crystals”, Cryst. Growth Des. 2008, 8, pp.
–3862.
(a) M.B. Hickey, M.L. Peterson, L.A. Scoppettuolo, “Performance
comparison of a cocrystal of carbamazepine
with marketed product”, Eur. J. Pharma. Biopharma. 2007,
, pp. 112–119.
(a) J.F. Remenar, S.L. Morissette, M.L. Peterson,
B. Moulton, J. MacPhee, H.R. Guzmán, Ö. Almarsson,
“Crystal engineering of novel cocrystals of a Triazole
drug with 1,4-dicarboxylic acids”, J. Am. Chem. Soc.
, 125, pp. 8456–8457.
(b) Nonappa, M. Lahtinen, E. Kolehmainen, J. Haarala,
A. Shevchenko, “Evidence of Weak Halogen Bonding:
New Insights on Itraconazole and its Succinic
Acid Cocrystal”, Cryst. Growth Des. 2013, 13, pp.
–351.
S. Aitipamula, V.R. Vangala, P.S. Chow, R.B.H. Tan,” Cocrystal
Hydrate of an Antifungal Drug, Griseofulvin, with
Promising Physicochemical Properties”, Cryst. Growth
Des. 2012, 12, pp. 5858–5863.
S. Aitipamula, A.B.H. Wong. P.S. Chow, R.B.H. Tan,
“Pharmaceutical cocrystals of ethenzamide: structural,
solubility and dissolution studies”, CrystEngComm, 2012,
, pp. 8515–8524.
Y. Gao, H. Zu, J. Zhang, “Enhanced dissolution and stability
of adefovir dipivoxil by cocrystal formation”, J. Pharm.
Pharmacol. 2011, 63, pp. 483–490.
Y. Luo, B. Sun, “Pharmaceutical Co-crystals of Pyrazinecarboxamide
(PZA) with Various Carboxylic acids: Crystallography,
Hirshfeld Surfaces and Dissolution Study”,
Cryst. Growth Des. 2013, 13(5), pp. 2098–2106.
N.R. Goud, S. Gangavaram, K. Suresh, S. Pal, S.G. Manjunatha,
S. Nambiar, A. Nangia, “Novel Furosemide Cocrystals
and Selection of High Solubility Drug Forms”,
J. Pharm. Sci. 2012, 101, pp. 664–680.
S. Basavoju, D. Bostroem, S.P. Velaga, “Pharmaceutical
cocrystal and salts of norfloxacin”, Cryst. Growth Des.
, 6, pp. 2699–2708.
U.S. Food and Drug Administration, Office of Combination
Products, www.fda.gov/oc/combination/, 21 CFR
Part 3.2(e).
(a) A.I. Wertheimer, A. Morrison, “Combination drugs:
innovation in pharmacotherapy”, P&T. 2002, 27(1),
pp. 44–49.
(b) K.K. Bucci, C.J. Possidente, “Combination-drug products:
benefit or burden to patients?”, Am. J. Health.
Syst. Pharm., 2006, 63, pp. 1654–1655.
(c) S. Frantz, “The trouble with making combination
drugs”, Nat. Rev. Drug Discovery, 2006, 5, pp. 881–882.
M.L. Cheney, D.R. Weyna, N. Shan, M. Hanna, L. Wojtas,
M.J. Zaworotko, “Coformer Selection in Pharmaceutical
Cocrystal Development: a Case Study of a
Meloxicam Aspirin Cocrystal That Exhibits Enhanced
Solubility and Pharmacokinetics”, J. Pharm. Sci. 2011, 100,
pp. 2172–2181.
A.O.L. Évora, R.A.E. Castro, T.M.R. Maria, M.T.S. Rosado,
M.R. Silva, A.M. Beja, J. Canotilho, M.E.S. Eusébio,
“Pyrazinamide-Diflunisal: A New Dual-Drug Co-Crystal”,
Cryst. Growth Des. 2011, 11, pp. 4780–4788.
P.M. Bhatt, Y. Azim, T.S. Thakur, G.R. Desiraju, “Co-crystals
of the anti-HIV drugs lamivudine and zidovudine”,
Cryst. Growth Des. 2009, 9, pp. 951–957.
(a) B. Lockwood, “Nutraceuticals”, Pharmaceutical Press:
London, UK, 2007.
(b) M. Mannion, “Nutraceutical revolution continues at
Foundation for Innovation in Medicine Conference”,
Am. J. Nat. Med. 1998, 5, pp. 30–33.
A.J. Smith, P. Kavuru, L. Wojtas, M.J. Zaworotko, R.D.
Shytle, “Cocrystals of quercetin with improved solubility
and oral bioavailability”, Mol. Pharmaceutics 2011, 8,
pp. 1867–1876.
P. Sanphui, N.R. Goud, U.B.R. Khandavilli, A. Nangia,
“Fast Dissolving Curcumin Cocrystals”, Cryst. Growth Des.
, 11, pp. 4135–4145.
S.J. Bethune, N. Schultheiss, J.O. Henck, “Improving the
Poor Aqueous Solubility of Nutraceutical Compound
Pterostilbene through Cocrystal Formation”, Cryst.
Growth Des. 2011, 11, pp. 2817–2823.
W.C. McCrone, “Polymorphism in Physics and
Chemistry of the Solid State”, D. Fox, M.M. Labes,
A. Weissberger, Eds.; Interscience, New York: 1965; 2,
pp. 725–767.
(a) T. Siegrist, C. Kloc, J.H. Schon, B. Batlogg, R.C. Haddon,
S. Berg, G.A. Thomas, “Enhanced Physical Properties
in a Pentacene Polymorph” Angew. Chem., Int.
Ed. Engl. 2001, 40, pp. 1732–1736.
(b) D.J.W. Grant, “In Polymorphism in Pharmaceutical
Solids”, H.G. Brittain, , Ed.; Marcel Dekker, Inc.: New
York, 1999; 95, pp. 1–33.
P. Vishweshwar, J.A. McMahon, M.L. Peterson,
M.B. Hickey, T.R. Shattock, M.J. Zaworotko, “Crystal Engineering
of Pharmaceutical Co-crystals from Polymorphic
Active Pharmaceutical Ingredients”, Chem. Commun.,
, pp. 4601–4603.
(a) S. Aitipamula, P.S. Chow, R.B.H. Tan, “Dimorphs of a
:1 cocrystal of ethenzamide and saccharin: solid-state
grinding methods result in metastable polymorph”,
CrystEngComm, 2009, 11, pp. 889–895.
(b) M. Gryl, A. Krawczuk, K. Stadnicka, “Polymorphism
of urea-barbituric acid co-crystals”, Acta Crystallogr.
Sect. B, 2008, 64, pp. 623–632.
(c) W.W. Porter III, S.C. Elie, A.J. Matzger, “Polymorphism
in Carbamazepine cocrystals”, Cryst. Growth Des. 2008,
, pp. 14–16.
(d) J.H.T. Horst, P.W. Cains, “Co-crystal polymorphism
from a Solvent-Mediated Transformation”, Cryst.
Growth Des. 2008, 8, pp. 2537–2542.
T. Ueto, N. Takata, N. Muroyama, A. Nedu, A. Sasaki, S.
Tanida, K. Terada, “Polymorphs and a Hydrate of Furosemide–
Nicotinamide 1:1 Cocrystal” Cryst. Growth Des.
, 12, pp. 485–494.
D. Braga, G. Palladino, M. Polito, K. Rubini, R. Grepioni,
M.R. Chierotti, R. Gobetto, “Three polymorphic forms
of the co-crystal 4,4′-bipyridine/pimelic acid and their
structural, thermal, and spectroscopic characterization”,
Chem. Eur. J. 2008, 14, pp. 10149–10159.
S. Aitipamula, P.S. Chow, R.B.H. Tan, “Trimorphs of
a pharmaceutical cocrystal involving two active pharmaceutical
ingredients: potential relevance to combination
drugs”, CrystEngComm, 2009, 11, pp. 1823–1827.
(a) G.R. Desiraju, “Cryptic Crystallography”, Nature
Materials, 2002, 1, pp. 77–79.
(b) H.C.S. Chan, J. Kendrick, M.A. Neumann, F.J.J.
Leusen, “Towards ab initio screening of co-crystal
formation through lattice energy calculations and
crystal structure prediction of nicotinamide, isonicotinamide,
picolinamide and paracetamol multicomponent
crystals”, CrystEngComm, 2013, 15,
pp. 3799–3807.
Refbacks
- There are currently no refbacks.