Structural Diversities in Metal-Organic Coordination Polymers Based on Flexibility in Organic Spacer

Anindita Chakraborty, Tapas Kumar Maji

Abstract


Metal-organic coordination polymers with their various novel structural motifs have drawn intense research interests over the last few decades. Interestingly, flexibility of the organic spacers in such metalorganic coordination polymers can direct various structural topology and intricate networks. A novel 1D coordination polymer and some other illustrative examples with different flexible ligands like 1,2-bis(4-pyridyl)ethane (bpe) and 1,3-bis(4-pyridyl)propane (bpp) have been discussed in this review. Both gauche and anti-conformations could be adopted by the bpe ligand, and hence diverse structures can be furnished. Further flexibility could be achieved by exploiting longer ligand like 1,3-bis(4-pyridyl) propane (bpp). Our group has been pursuing research to furnish such flexible compounds and study their different functionalities. An account of design of such diverse systems by employing judicious ligand design strategy and their different structural aspects will be presented in this review.

Full Text:

PDF

References


(a) A. K. Cheetham and C. N. R. Rao, Science 2007, 318, 58;

(b) J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213;

(c) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature 2003, 423, 705;

(d) K. L. Gurunatha, G. Mostafa, D. Ghoshal and T. K. Maji, Cryst. Growth Des., 2012, 10, 2483;

(e) K. L. Gurunatha and T. K. Maji, Inorg. Chem., 2009, 48, 10886l;

(f) D. Ghoshal, T. K. Maji, G. Mostafa, T.-H. Lu and N. Ray Chaudhuri, Crys. Growth Des., 2003, 3, 9.

(a) T. C. Stamatatos, A. G. Christou, C. M. Jones, B. J. O’Callaghan, K. A. Abboud, T. A. O’Brien, and G. Christou, J. Am. Chem. Soc., 2007, 129, 9840;

(b) D. Ghoshal, A. D. Jana, T. K. Maji and G. Mostafa, Inorg. Chim. Acta, 2006, 359, 690;

(c) J. J. Vittal, Coord. Chem. Rev., 2007, 251, 1781;

(d) C. F. Lee, D. A. Leigh, R. G. Pritcharg, D. Schults, S. J. Teat, G. A. Timco and R. E. P. Winpenny, Nature, 2009, 458, 314;

(e) S. Sain, T. K. Maji, D. Das, J. Cheng, T.-H. Lu, J. Ribas, M. Salah El Fallah and N. Ray Chaudhuri, Dalton Trans., 2002, 1302;

(f) O. Kahn, Molecular Magnetism. VCH, New York, 1993;

(g) P. S. Mukherjee, T. K. Maji, T. Mallah, E. Zangrando, L. Randaccio and N. Ray Chaudhuri, Inorg. Chim. Acta, 2001, 315, 249;

(h) T. K. Maji, I. R. Laskar, G. Mostafa, A. J. Welch, P. S. Mukherjee and N. Ray Chaudhuri, Polyhedron, 20, 651, 2001;

(i) A. Chakraborty, K. L. Gurunatha, A. Muthulakshmi, S. Dutta, S. K. Pati and T. K. Maji, Dalton Trans., 2012, 41, 5879;

(j) A. Chakraborty, B. K. Ghosh, J. R. Arino, J. Ribas, and T. K. Maji, Inorg. Chem., 2012, 51, 6440;

(k) A. Chakraborty, L. S. Rao, A. K. Manna, S. K. Pati, J. Ribas and T. K. Maji, Dalton Trans., 2013, 42, 10707.

(l) K. L. Gurunatha and T. K. Maji, Inorg. Chem., 2009, 48, 10886.

(a) P. Kanoo and T. K. Maji, Eur. J. Inorg. Chem. 2010, 3762;

(b) A. Hazra, S. Bonakala, S. K. Reddy, S. Balasubramanian, and T. K. Maji, Inorg. Chem., 2013, 52, 11385;

(c) A. Chakraborty, R. Haldar and T. K. Maji, Cryst. Growth Des., 2013, 13 (11), 4968;

(d) A. Hazra, K. L. Gurunatha and T. K. Maji, Cryst. Growth Des., 2013, 13 (11), 4824;

(e) P. Kanoo, A. C. Ghosh, S. T. Cyriac, T. K. Maji, Chem. Eur. J., 2012, 18, 237;

(f) K. Jayaramulu, S. Reddy, A. Hazra, S. Balasubramanian and T. K. Maji, Inorg. Chem., 2012, 51, 7103.

(a) P. Kanoo, R. Matsuda, Ryo Kitaura, S. Kitagawa, and T. K. Maji, Inorg. Chem., 2012, 51 (17), 9141;

(b) P. Kanoo, K. L. Gurunatha and T. K. Maji, J. Mater. Chem., 2010, 20, 1322.

(a) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and K. Kim, Nature, 2000, 404, 982;

(b) E. Suresh and M. M. Bhadbhade, CrystEngComm, 2001, 13, 1.

M. Fujita, Y. J. Kwon, M. Miyazawa and K. Ogura, J. Chem. Soc., Chem Commun., 1994, 1977.

T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and M. J. Zaworotko, Angew. Chem., Int. Ed., 1997, 36, 972.

M. Fujita, S. Nagao, M. Iida, K. Ogata and K. Ogura, J. Am. Chem. Soc., 1993, 115, 1574.

M. Ferbinteanu, G. Marinescu, H. W. Roesky, M. Noltemeyer, H. G. Schmidt and M. Anrudh, Polyhedron, 1998, 18, 243.

S. Y. Vyasamudri and T. K. Maji, Chem. Phys. Lett., 2009, 473, 312.

(a) P. Kanoo, R. Matsuda, M. Higuchi, S. Kitagawa and T. K. Maji, Chem. Mater. 2009, 21, 5860;

(b) Q. Yang and C. Zhong, J. Phys. Chem. B, 2006, 110, 655. 12. R. Haldar and T. K. Maji, CrystEngComm, 2012, 14, 684.

P. Kanoo, R. Sambhu and T. K. Maji, Inorg. Chem., 2011, 50, 400.

T. K. Maji, G. Mostafa, R. Matsuda and S. Kitagawa, J. Am. Chem. Soc., 2005, 127, 17152.

R. Bertani, P. Sgarbossa, A. Venzo, F. Lelj, M. Amati, G. Resnati, T. Pilati, P. Metrangolo and G. Terraneo, Coord. Chem. Rev., 2010, 254, 677.

Crystallographic data for compound 1: Crystal system: Monoclinic, Empirical formula: C24H30CoN4Cl2O3; a (Å):

0837(9); b (Å): 8.9943(4); c (Å): 9.7251(4); β (°): 110.924(2); V (Å3): 1314.07(11); Z: 2; R: 0.0382; Rw: 0.0651 [R = Σ||Fo| - |Fc||/Σ|Fo| . Rw = [Σ{w(Fo 2 – Fc 2)2}/Σ{w(Fo 2)2}]1/2.


Refbacks

  • There are currently no refbacks.