Macromolecular Crystallography in India in the Global Context*

M Vijayan

Abstract


The most spectacular applications of crystallography are currently concerned with biological macromolecules like proteins and their assemblies. Macromolecular crystallography originated in England in the thirties of the last century, but definitive results began to appear only around 1960. Since then macromolecular crystallography has grown to become central to modern biology. India has a long tradition in crystallography starting with the work of K. Banerjee in the thirties. In addition to their contributions to crystallography, G.N. Ramachandran and his colleagues gave a head start to India in computational biology, molecular modeling and what we now call bioinformatics. However, attempts to initiate macromolecular crystallography in India started only in the seventies. The work took off the ground after the Department of Science and Technology handsomely supported the group at Indian Institute of Science, Bangalore in 1983. The Bangalore group was also recognized as a national nucleus for the development of the area in the country. Since then macromolecular crystallography, practiced in more than 30 institutions in the country, has grown to become an important component of scientific research in India. The articles in this issue provide a flavor of activities in the area in the country. The area is still in an expanding phase and is poised to scale greater heights.

 

*This contribution has considerable overlap with ref. 26 and ref. 27, which are based on lectures delivered by the author.


Full Text:

PDF

References


Bernal, J. D., Crowfoot, D. X-ray photographs of crystalline pepsin. Nature 133, 794–795 (1934).

Crowfoot, D. X-ray single crystal photographs of insulin. Nature 135, 591–592 (1935).

Bernal J. D., Fankuchen I., Perutz M. F. An X-ray study of chymotrypsin and haemoglobin. Nature 141, 523–524 (1938).

Pauling, L., Corey, R. B., Branson, H. R. The structure of proteins: Two hydrogen-bonded helical configurations of polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951).

Pauling, L., Corey, R. B. The pleated sheet. A new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. USA 37, 251–256 (1951).

Watson, J. D., Crick, F. H. C. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

Ramachandran, G. N., Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).

Green, D. W., Ingram, V. M. and Perutz, M. F. The structure of haemoglobin IV. Sign determination by the isomorphous replacement method. Proc. Roy. Soc. Series A, 225, 287–307 (1954).

Kendrew, J. C., Dickerson, R. E., Strandburg, B. E., Hart, R. G., Davies, D. R. Phillips, D. C. and Shore, V. C. Structure of myoglobin. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 185, 422–427 (1960).

Perutz, M. F., Rossmann, M. G., Cullis Ann F., Muirhead, H., George, W., North, A. C. T. Structure of Hemoglobin. A three dimensional Fourier synthesis at 5.5 Å resolution. Nature 185, 416–422 (1960).

Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., Sarma, V. R. Structure of hen egg white lysozyme: A three dimensional Fourier synthesis at 2 Å resolution. Nature 206, 757–761 (1965).

Kartha, G., Bello, J. and Harker, D. Tertiary structure of ribonuclease. Nature 213, 862–865 (1967).

Phillips, D., Blow, D., Hartley, B., Lowe, G. A discussion on the structures and functions of proteolytic enzymes. Phil. Trans. Royal Soc. London Series B 257, 63–266 (1970).

Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B., Sheat, S. Structure of rhombohedral 2 Zinc insulin crystals. Nature 224, 491–495 (1969).

Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Mercola, D. A. and Vijayan, M. Atomic positions in rhombohedral 2 zinc insulin crystals. Nature 231, 506–511 (1971).

Ramachandran, G. N., Ramakrishnan, C. and Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

Rose, P. W., Chunxiao, B., Bluhm, W. F., Christie, C. H., Dimitropoulos, D., Dutta, S., Green, R. K., Goodsell, D. S., Prlic, A., Quesada, M., Quinn, G. B., Ramos, A. G., Westbrook, J. D., Young, J., Zardeck, C., Berman, H. M. and Bourne, P. E. The RCSB Protein Data Bank: new resources for research and education. Nucl. Acids Res. 41, D475–D482 (2013).

Vijayan, M., Johnson, L. N. Gopalasamudram Narayana Ramachandran. Biogr. Mems. Fell. R. Soc. 51, 367–377 (2005).

Banerjee, R., Shekhar, S. C., Ganesh, V., Das, K., Dhanraj, V., Mahanta, S. K., Suguna, K., Surolia, A. and Vijayan, M. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc. Natl. Acad. Sci. USA 91, 227–231 (1994).

Banerjee, R., Das, K., Ravishankar, R., Suguna, K., Surolia, A., Vijayan, M. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin lactose complex. J. Mol. Biol. 259, 281–296 (1996).

Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., Vijayan, M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism

fold. Nat. Struc. Biol. 3, 596–603 (1996).

Bhuvaneswari, M., Subramanya, H. S., Gopinath, K., Savithri, H. S., Nayudu, M. V. and Murthy, M. R. N. Structure of sesbania mosaic virus at 3.0 Å resolution. Structure 3, 1021–1030 (1995).

Sri Krishna, S., Hiremath, C. N., Munshi, S. K., Prahadeeswaran, D., Sastri, M., Savithri, H. S., Murthy, M. R. N. Three dimensional structure of physalis mottle virus: Implications for viral assembly. J. Mol. Biol. 289, 919–934 (1999).

Chakravarthy, S. and Kannan, K. K. Drug-Protein interactions: Refined structures of three sulfonamide drug complexes of human carbonic anhydrase I enzyme. J. Mol. Biol. 243, 298–309 (1994).

Vijayan, M. Macromolecular crystallography in India. A historical overview. J. Indian Inst. Sci. 87, 261–277 (2007).

Vijayan, M. The legacy of G. N. Ramachandran and the development of structural biology in India, In: Bansal, M., Srinivasan, N. (eds). Biomoleuclar forms and functions, IISc Press, World Scientific, Singapore, pp 1–16 (2013).

Vijayan, M. Form and function of proteins. Historical background and the Indian effort in macromolecular crystallography. Nat. Acad. Sci. Lett. DOI 10.1007/s40009-

-0220-5 (2013).

Ajay Kumar, R, Vaze, M. B., Chandra, N. R., Vijayan, M. and Muniyappa, K. Functional characterization of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry 35, 1793–1802 (1996).

Bachhawat, N. and Mande, S. C. Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291, 531–536 (1999).

Datta, S., Prabu, M. M., Vaze, M. B., Ganesh, N., Chandra, N.R., Muniyappa, K. and Vijayan, M. Crystal structure of Mycobacterium tuberculosis RecA and its complex with ADP-AIF4: implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res. 28, 4964–4973 (2000).


Refbacks

  • There are currently no refbacks.