Synthetic Gauge Fields for Ultra Cold Atoms: A Primer

Sankalpa Ghosh, Rashi Sachdeva

Abstract


We start by reviewing the concept of gauge invariance in quantum mechanics, for abelian and non-abelian cases. Then we describe howthe various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical wave function while adiabatically evolving in a parameter space. Subsequently we show how this concept is exploited to generate light induced gauge field for neutral ultracold bosonic atoms. As an example of such light induced Abelian andNon Abelian gauge field for ultra cold atoms we discuss ultra cold atomsin a rotating trap and creation of synthetic spin orbit coupling for ultra coldatomic systems using Raman lasers.

Full Text:

PDF

References


Quantum Simulation, Nature Physics Insight, 8, 264

(2012).

M. E. Peshkin and D. V. Schoreder, An introduction to

Quantum Field eory, Westview Press, Boulder (1995).

K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard,

Phys. Rev. Lett. 84, 806 (2000).

J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle,

Science 292, 476 (2001).

P. Engels, I. Coddington, P. Haljan, V. Schweikhard and E.

Cornell, 90, 170405 (2003).

Y.-J. Lin, K. Jimenez-Garcia and I. B. Spielman, Nature

, 83 (2011).

Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, I.

B. Spielman, Nature 462, 628 (2009).

D. Yoshioka, e Quantum Hall Effect, Springer, Berlin

Heidelberg (2002).

M. Z. Hassan and C. L. Kane, Rev. Mod. Physics, 82, 3045

(2010).

A. A. Abrikosov, Rev. Mod. Phys. 76, 975 (2004).

J. J. Sakurai, Modern Quantum Mechanics, Pearson Education

Inc., Fourth Indian Impression, 2009.

Y. Aharonov and D. Rohrlich, Quantum Paradoxes, Wiley-

VCH (2005).

M. V. Berry, Proc. R. Soc. A, 392, 45 (1984).

S. Pancharatnam, Ind. Acad. Sci., 44(5), Sec. A (1958).

C. A. Mead and D. G. Truhler, J. Chem. Phys. 70, 2284

(1979).

R. Jackiw, Comments At. Mol. Phys. 21, 71 (1988).

A. Shapere and F. Wilczek, Geometric Phases in Physics,

World Scientific, Singapore (1989).

R. Shankar, Principles of Quantum Mechanics, Chapter 21,

Springer, First Indian Reprint (2007).

A. Aalion, X. Blanck and J. Dalibard, Phys. Rev. A 71,

(2005).

L. Pitaevski and S. Stringari, Bose-Einstein Condensation,

Clarendon Press, Oxford (2003).

A. L. Fetter and A. A. Svidzinsky. J. Phys. Condens. Matter

, R135 (2001).

S. Ghosh, Phase Transititions, 77, 625 (2004).

A. L. Fetter, Rev. Mod. Physics, 81, 647 (2009).

N. R. Cooper, Advances in Physics 57, 539 (2008).

L. H. Ryder, Quantum Field eory, Cambridge University

Press, Cambridge (1985).

J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Ohberg, Rev.

Mod. Phys. 83, 1523 (2011).

G. Grynberg, A. Aspect and Claude Fabre, Introduction

to Quantum Optics, Cambridge University Press, Cambridge,

UK (2010).

F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

I. B. Spielman in Annual Review of Cold Atoms and

Molecules, Ed. K. W. Madison et al., Chapter 5 World Scientific

(2013).

N. A. Sinitsyn et al., Phys. Rev. B 70, 081312(R) (2004).

M. Aidelsburger et al., Phys. Rev. Lett. 107, 255301 (2011).

N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011).

I. Bloch, J. Dalibard and S. Naschimbene, Nat. Phys.

Insight, 8, 267 (2012).

R. Sachdeva and S. Ghosh, Phys. Rev. A 85, 013642 (2012).

B. Estienne, S. M. Hakker and K. Schoutens, New Journal

of Physics, 13, 045012 (2011).

Hui Zhai, Int. J. of Mod. Phys. B, 26, 1230001 (2011).


Refbacks

  • There are currently no refbacks.