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Abstract | Structural bioinformatics is an area that has emerged to comprehend and interpret

large amounts of structural data, and promises to provide a high resolution understanding of

biology. Protein structures can be compared, analyzed and mined in various ways, which allows

us to understand the functions of these molecules and reason precisely how and why such

capabilities have emerged in them. The main advantages these methods have over simpler

sequence based methods are that besides helping in associating a molecule with a function,

they also provide ultimate insights into the mechanisms by which various biological events take

place. This report provides an overview of structural bioinformatics, various advances in the

recent years and the range and scope of data driven protein structural analysis. In particular,

current trends in structure prediction, structure alignments, deriving sub-structures and

structural motifs, understanding features critical for molecular recognition as well as using

these for understanding function of protein molecules are presented. Application of structural

knowledge in drug discovery for lead identification as well as novel ways of understanding

drug adverse effects and drug resistance are also discussed. Finally prospects for structure

based vaccine design are also outlined. The various aspects of structural bioinformatics

discussed here, show how biological insights can be obtained from protein structures.

1. Introduction
The advent of the ‘omics’ era that began with high
throughput gene sequencing has led to deciphering
complete genome sequences of thousands of
organisms (Kyrpides 1999; Liolios et al., 2008, for
example). The obvious next step in comprehending
this huge pool of data and for their application
across all life-science disciplines would be to
understand the function of each of the gene
products. The quest for understanding protein
function has resulted in a rapid accumulation of
structural data, with more than 50,000 entries in the
Protein Data Bank (Berman et al., 2000). Needless
to say, the highest resolution of information of the
function of the protein is obtained through the
understanding of their three-dimensional structures.

While sequence data has become easier to derive,
with millions of proteins now sequenced, structural
data that comes from X-ray crystallography and
from the NMR experiments, numbers only about
52,103 ( http://www.rcsb.org/) today. The available
genome sequences in fact indicate that the sequence
space sampled by these is already nearly complete,
up to the level of tetra-peptides (Poddar et al., 2007),
with most of the 160000 different tetra-peptides,
8000 different tri-peptides, 400 di-peptides and
certainly the 20 different amino acids occurring as
segments in some protein or the other. To bridge the
wide gap between sequence and structure, various
computational methods have emerged that can
predict the structure of a protein molecule with
high confidence in many cases (Pillardy et al., 2001;
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Sanchez and Sali 1997; Unger 2004; Jones et al., 1992;
Sun 1993). Applying such molecular models have
led to a significant increase in structural data, which
now approaches millions. The need to navigate and
comprehend this large resource of experimental and
theoretical structural data, has automatically led
to the genesis of a new discipline called structural
bioinformatics (Burley 2000; Bourne and Weissig,
2003), which has become well established in the
last decade. Structural Bioinformatics is probably
best thought of as the discipline, which, rationalizes,
and classifies information contained in the three
dimensional structures of molecules, in terms
of their functional capabilities, thus ultimately
helping in understanding at atomic level detail,
how biological organisms encode, make use of, and
pass on information. The main advantages these
methods have over simpler sequence based methods
are that besides helping in associating a molecule
with a function, they also provide ultimate insights
into the mechanisms by which various biological
events take place.

In principle, the term could encompass
all biological macromolecules, but is used
predominantly in the context of protein molecules.
Comparing proteins, deriving structural patterns,
correlating with function and ultimately utilizing
such patterns for prediction are all integral
components of structural bioinformatics. Given
the complexities involved in solving new crystal or
NMR structures of protein molecules, it might often
feel like a successful end to a long struggle, but in
reality a structure is just the beginning of a journey
to understand the function of the protein molecule.
Structural bioinformatics is an important area that
serves as a bridge in transforming protein structures
into biological insights. This report provides an
overview of the advances in the discipline, with a
focus on the computational methods that have been
developed over the years along with a glimpse of the
applications that emerge out of such capabilities,
often using examples from work carried out by our
group. An overview of various aspects of structural
bioinformatics is illustrated in Figure 1.

2. Understanding function through protein
structure

Ever since classic experiments by Christian Anfinsen
(Anfinsen 1959), sequences have been known to
contain the information required to fold the protein
molecule and dictate its function. Since sequence
data is more readily available, the ‘sequence-
function’ paradigm is heavily used, in which, the
sequence of a particular protein is compared with
other related sequences in databases to infer their
functional role(s). Derivation of sequence-structure-
function relationships in protein molecules is a

fundamental objective in bioinformatics. In fact,
much of present day biology is dependent on the
knowledge of such relationships. Biology, in its
present practice, is effectively a relational science,
decisions made with one system being heavily
influenced by the knowledge obtained from other
systems. It is quite understandable therefore, why
recognizing similarities and deriving relationships
are crucial for all further knowledge. This need is not
only heightened, but is also rendered feasible with
the large numbers of genomes being sequenced in
the last few years. Where available, protein structures
provide much better functional insight, than their
sequences alone.

2.1. Molecular modelling
A number of methods have been developed in the
last couple of decades to model the structures of
protein molecules. Of these, homology modelling
seeks to predict the structure of a protein by
using a structural template of a homologous
sequence, in cases where such a template is
available. This is based on the premise that two
sequences who are homologous also share the same
structural fold. An analysis of the protein fold space
indeed reveals that the available protein structures
cluster only into certain regions of the entire
space (Holm and Sander, 1996), indicating that
several protein families share common structural
folds even where they do not share sufficient
sequence similarities. Energy minimisation that
uses molecular mechanics based force fields and in
some cases also molecular dynamics simulations,
are then used to refine the initial models obtained
by using the templates. This methodology is
well established now and is beginning to be
used in a high-throughput manner (Pieper et
al., 2004) {http://salilab.org/modbase/} to model
entire proteomes (Peitsch 1997). The different
methods vary mainly in terms of positioning of side
chains, loop building, treatment of neighbourhoods,
force-field parameters and in model refinement
techniques (Sanchez and Sali 1997). The success
seen at the popular CASP experiments conducted
once every two years stand testimony to the advances
in this area and to the confidence one can have in
models thus built (Moult et al., 1995; 2007).

One of the first structural bioinformatics
analyses to be carried out, although not called
by that name at that time, is the computation of
the Ramachandran map (Ramachandran et al.,
1963), which provides a rational basis for describing
stereochemically possible structures of polypeptides.
In this, the ’structure space’ of protein chains
is reduced to two-dimensions, by representing
a structure in terms of the torsion angles of the
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Figure 1: An overview of different aspects of structural bioinformatics.
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protein backbone. Today, this map is used as an
integral part of structure determination, in order
to estimate the quality of protein structures. As
a conceptual extension to this analysis, analysis
of side chain conformations in proteins (Bhat et
al., 1979), design of rotamer libraries for use in
molecular modelling (Dunbrack and Karplus, 1994)

and structure validation and several other analyses,
that are used quite routinely in crystal structure
refinement and for quality estimation (Laskowski et
al., 1993).

Hundreds of models of protein structures have
been built and used for obtaining a variety of
biological insights. An example of the use of
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Figure 2: Comparison of the inactive ‘open’ state (red), with the active ‘closed’ state (blue) of
phosphoglycerate kinase. A large domain motion occurs upon binding of the two substrates.

this technique, is the molecular modelling of
the closed conformation of a ternary complex of
phosphoglycerate kinase (Chandra et al., 1998,
Figure 2), which indicated that upon substrate
binding a large conformational change would be
essential to facilitate catalysis, a prediction that
was validated by a crystal structure of the closed
form of the enzyme from T. brucei (Bernstein et
al., 1998). Another example is the molecular model
of the assembly of the chromatosome particle,
which has lead to the understanding of the nature
of interaction of the globular domain and the
functional role of the C-terminal domain of the
linker histone, providing clues to certain important
factors in chromatin formation (Bharat et al., 2003).
Yet another example is the homology modeling
studies of δ-Aminolevulinic acid dehydrase from
Plasmodium falciparum, which provided a rationale
to explain unique properties of this enzyme, such
as alkaline pH optima and apicoplast localization,
making it resemble the plant enzyme, while at the
same time manifesting certain unique properties
such as Mg2+-independent and EDTA resistant
catalytic activity (Shanmugham et al., 2004). There
are also a number of examples in literature
where molecular models have been used in drug
discovery, either at the lead design or at the
lead optimisation stage (Tanrikulu and Schneider
2008). An early notable example of that is the
design of ‘captopril’, an anti-hypertensive drug
that inhibits angiotensin converting enzyme (ACE),
based on structural clues obtained from functionally
analogous carboxypeptidase (Ondetti et al., 1977).
With the complete sequencing of several genomes,
as comparative genomics becomes feasible, direct

clues about sets of proteins are obtained, leading to
rational target identification and rational design
of lead compounds, both critical steps in drug
discovery (Raman et al., 2007) .

Some relationships among proteins at the fold
level are readily identified due to the sequence
similarities among them. However, in many cases
the sequence similarities can be very low and thus
relationships not obvious. It is now well accepted
that conservation at the structure level can be
much higher and thus more detectable than at
the sequence level (For example, 1B3A and 1TVX
have low sequence identity but high structural
similarity (Lo et al., 2007)). In a different context,
this issue is hotly debated to determine whether such
molecules are the result of convergent evolution
or actually products of divergent evolution but
the divergence is so high that they cannot be
recognised. Nevertheless, many more structures
can be predicted by recognizing with which of the
known folds a given sequence is most compatible;
a technique popularly known as threading (Jones
et al., 1992; Rost et al., 1997) or by comparing
profiles of sequences that contain clues about their
preferred neighbourhoods. Threading works by
winding the query sequence on to the fold of
a template backbone from a database of folds
and evaluating the feasibility of the threaded
structure in terms of geometric and chemical
compatibility, through the measurement of all pair-
wise interaction potentials of the individual residues
(Jones et al., 1992). The profile based methods
simultaneously compare multiple features of a
protein that captures structural environment of
each residue, using dynamic programming methods
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and are complementary to the threading methods.
They have been applied in a variety of cases, which
have led to understanding aspects such as the
functional family, a protein belongs to or the ligand
the given protein is most likely to recognize. A last
category of modelling is that of ab-initio structure
prediction, which can be achieved without any
structural templates, since it is based on the premise
that the native conformation of the protein will
have a global minimal energy and hence appropriate
computational methods should be able to find that
conformation through a thorough search (Pillardy
et al., 2001). This approach however has many
practical difficulties due to the combinatorial nature
of the possible arrangements of each residue with
respect to the next, in three dimension as well as the
difficulty in discriminating real structures from the
decoys and thus cannot as yet be used as a routine
technique.

2.2. Function annotation
Once a structure is available, its function can be
obtained in some cases by comparison of its fold to
that of another protein whose function is already
determined experimentally and transfer of that
functional knowledge to the new protein. Function
itself can be defined at different interdependent
levels, the two most important of them being
(a) the level of molecular function which includes
binding of a particular ligand and catalysis of a
particular reaction, and (b) the level of the biological
process, which refers to the larger function of the
protein. For example, the function of the RecA
protein could be described as ATP binding and
DNA binding at the first level and as a component
of homologous recombination and DNA repair at
the second level. ‘Fold to function’ models have
been the basis for functional annotation of proteins
in some cases. When two proteins exhibit high
structural similarity along their entire polypeptide
chains, they are likely to have similar functions,
both at the molecular function level as well as at
the biological process level. When two proteins
exhibit only a part similarity in their structures,
their functions are not necessarily the same and
more detailed studies would be required to infer
function, as described later. Part similarity can exist
in two broad ways; (i) medium-to-high similarity
in a portion of the polypeptide chain, indicating
the presence of a common domain in the two
proteins or (ii) low-to-medium level similarity in
most part of the polypeptide chain. For the first
category, inferring molecular level function would
be possible for the conserved region in many cases,
but inferring biological process level function would
not be possible. For the second category, functional

inference at either level would not be meaningful
since fold level similarity does not necessarily
imply conservation at the functional regions of
the molecule and hence does not also imply
conservation in function, especially at the level
of the biological process. Thus, structure to function
models work best when there is high conservation
in the entire protein, application of which are
described several times in the literature. An
interesting example is the annotation of function of
Rv3214 from Mycobacterium tuberculosis as a broad-
spectrum phosphatase, important for mycobacterial
phosphate metabolism in vivo (Watkins and Baker
2006). This protein was originally annotated
as EntD through sequence similarity with the
Escherichia coli EntD, a 4′-phosphopantetheinyl
transferase implicated in siderophore biosynthesis.
After solving its crystal structure as part of a
structural genomics initiative, closer comparisons of
structure and sequence indicated the protein to be a
phosphatase belonging to the dPGM superfamily,
later confirmed by biochemical experiments.
Another example of obtaining biological insights
through structure is that of Rv1347c, a putative
antibiotic resistance protein from Mycobacterium
tuberculosis, which revealed a GCN5-related fold,
suggested an alternative function in Siderophore
Biosynthesis, rather than its annotation as a putative
aminoglycoside N-acetyltransferase (Card et al.,
2005).

3. Structure comparison and classification
3.1. Algorithms
An essential pre-requisite for inferring function
from structures is to compare them and use
appropriate metrics to describe structural similarity.
While comparing protein molecules through their
sequences has now become a well established routine
task in most cases, structural comparison of protein
molecules still remains a challenge. Matching 3D
objects in any field is a non-trivial matter. For
proteins, additional complexity arises from the need
to compare molecules of different sizes, need to
consider insertions and deletions, commonly known
as ‘indels’ as well as non-topological similarities.
Many protein structure comparison algorithms
have been proposed for estimating the extent
of similarity between two proteins. A majority
of them consider backbones corresponding to
each of the proteins and align them by defining
a set of equivalences between pairs of atoms
between the two proteins. Equivalences between
methods can be derived at by any of the strategies -
dynamic programming, distance matrices, fragment
matching, geometric hashing, maximal common
subgraph detection or local geometry matching.
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DALI (Holm and Sander 1993) for example uses
distance matrices, CE (Shindyalov and Bourne
1998) uses combinatorial extension of alignment
path, the method by Taylor and Orengo (1989)
uses dynamic programming, that by Szustakowski
and Weng (2000) uses genetic algorithms, that
by Zhu and Weng (2005) uses maximal common
subgraphs between proteins represented as graphs
and that by (Krissinel and Henrick 2004) aligns
matching of secondary structural elements followed
by local refinement to align Cα atoms. DALI
represents a protein structure as a 2D distance
matrix that considers distances between all pairs
of Cα atoms. The matrix hence formed becomes a
frame invariant representation, containing sufficient
information for reconstruction of the 3D object
except for possible loss of chirality. An elegant
scoring function is used to score pairs of fragments
with matching distances, to finally obtain a score
indicating the extent of similarity. Commonly
used metrics for comparing structures are root
mean squared deviation, Z- scores that indicate
quality of alignment that overcomes some of the
drawbacks of the RMSD metric. The dynamic
programming by Taylor and Orengo 1989 is similar
to that of Needleman and Wunsch for sequence
alignment (Needleman and Wunsch 1970), but
has the drawback of requiring huge computational
resources-time and memory. The maximal common
subgraph detection by Zhu and Weng (Zhu and
Weng 2005) involves incremental construction of
the graph between pairs of Cα atoms and uses
local geometric properties to arrive at pairs of
nodes, assigns edges by directionality based scoring
scheme, iteratively prunes the bad vertices and
finally uses dynamic programming to arrive at final
alignment on this simplified graph. Unfortunately,
the formulations have turned out to be NP-Hard
(Zhu and Weng 2005), leading to the development
of many heuristics. Two main issues about protein
structure comparison algorithms are, to what extent
are indels tolerated and whether non-topological
similarities are detected. MatchProt, a new fast
algorithm developed addresses some of these issues
(Bhattacharya et al., 2006). The formulation involves
a novel method of characterization of the residues
of a protein in the context of its overall structure by
projecting them on the real line in a neighborhood
preserving way. This characterization is used to
define a similarity function between the residues
of two proteins and find the optimal equivalences.
Non-topological similarities in a set of circularly
permuted proteins are identified between sets of
proteins efficiently, resulting in a more realistic
estimation of their extents of similarity than many
other algorithms available for that purpose. Various
algorithms available for structural comparison and
other analyses are indicated in Table 1.

3.2. Classification
As many protein structures became available,
Murzin and co-workers (Murzin et al., 1995;
Andreeva et al., 2008) made an insightful
classification of about 3000 protein structures
available at that time, by visual comparison guided
by their intuition and organized protein structures
into a database called SCOP. A hierarchical
organization was used, consisting of four levels:
the structural class, super-family, family and fold.
Each protein is described at these levels. About
405 unique folds were observed at that time from
about 6500 structures, which has grown today into
more than 1086 folds, 1777 super-families and
3486 families (SCOP-1.73 release). Subsequently
Thornton and co-workers developed a classification
scheme and a resulting database called CATH
(Orengo et al., 1997). In this, structures are also
described based on a hierarchical organization,
but are compared with each other by using
structural comparison algorithms. These databases
are most useful resources for understanding a
protein structure and are heavily used by structural
biologists and bioinformaticians. Various databases
of protein structures and their derived features
are indicated in Table 2. PALI, a database of
phylogeny and alignment of members of SCOP
families, (Gowri et al., 2003), SMotif- a database of
structural motifs in proteins (Pugalenthi et al., 2007),
CAMPASS, a database of structural superfamilies
(Sowdhamini et al., 1998), are examples of databases
resulting from structural bioinformatics analyses.
Several tools to extract various structural features
and probe their roles in stabilizing the structure
or imparting function, have also been developed
that enable such analysis over the internet at great
ease (Ananthalakshmi et al., 2005). Classification of
protein sequences and structures into families is a
fundamental task in biology. Some relationships are
detected by the similarities in their sequences, many
more by the similarities in their structures.

3.3. Family specific databases
Specific classification schemes and databases for
many protein families have also been developed
which present structure-function relationships in
great detail. One such example from our work
is the lectin knowledge base (Chandra et al.,
2006; http://proline.physics.iisc.ernet.in/lectindb/
which classifies 941 unique plant lectins from
241 different plants into 7 fold types. Multiple
alignments within each fold class have been carried
out, followed by phylogenetic analyses, which are
useful to understand the extent of divergence in
detail and hence subtle but definite functional
differences/adaptations, within each fold. A database
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Table 1: Examples of Algorithms for various structural bioinformatics operations

Operation Description and References

Structure Prediction Threading (Joneset al., 1992)
Optimization of potential energy function (Pillardy et al., 2001)
Threading (Rost et al., 1997)
Genetic algorithm(Unger 2004)

Structure Comparison Projection of residue vectors (Bhattacharya et al., 2006)
Graph theoretic comparison (Harrison et al., 2003)
Alignment of distance matrices (Holm and Sander 1993)
Matching secondary structural elements (Krissinel and Henrick 2004)
Combinatorial extension of alignment path (Shindyalov and Bourne 1998)
Genetic algorithm (Szustakowski and Weng 2000)
Dynamic programming (Taylor and Orengo 1989)
Flexible structure alignment (Ye and Godzik 2003)
Graph theoretic comparison (Zhu and Weng 2005)

Substructure Retrieval Spatial motifs (Kleywegt 1999)
Matching secondary structural matrices (Shi et al., 2007)
Depth first search (Stark and Russel 2003)
Hydrogen bond signatures (Prasad et al., 2004)

Binding Site Detection Energy based clustering of probe grid cells (An et al., 2005)
Scanning of 3D grid (Hendlich et al., 1997)
Scanning of 3D grid and residue conservation information (Huang and Schroeder 2006)
Depth based clustering of grid cells (Kalidas and Chandra 2008a)
Delaunay triangulation (Kleywegt and Jones 1994)

Estimating ligand recognition Support vector regression based (Bock and Gough 2002)
Spherical harmonics matching of shape complementarity (Cai et al., 2002)

Protein-Protein Interaction Neural network based (Fariselli et al., 2002)
Surface patch analysis (Jones and Thornton 1997)

Docking Genetic algorithm ”Autodock” (Morriset al., 1999; Khodadeet al., 2007)
Geometric hashing for docking of ligands ”FlexX” (Rareyet al., 1996)
Fragmentation based docking of ligand ”LUDI” (Bohm 1992)
Protein-protein docking based on shape complementarity (FTDOCK) (Gabbet al., 1997)

Table 2: Examples of primary and derived structural databases available

Database URL Reference

Protein Data Bank (PDB) http://www.pdb.org Berman et al., 2000
The Macromolecular Structure Database (MSD) http://www.ebi.ac.uk/msd/ Henrick et al., 2003
Fold Classification based on structure-structure assignments
(FSSP)

http://ekhidna.biocenter.helsinki.fi/dalis erver/ Holm and Sander 1993

Structural classification of proteins (SCOP) http://scop.mrc-lmb.cam.ac.uk/scop/ Murzin et al., 1995
Class architecture topology and hierarchical classification of
proteins (CATH)

http://www.cathdb.info Orengo et al., 1997

Protein Function Prediction ProFunc http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/ Laskowski et al., 2005a,b
PDB-Ligand http://www.idrtech.com/PDB-Ligand/ Shin and Cho 2005
PDB ligand search http://www.ebi.ac.uk/msd-srv/msdmotif/chem
Database of biologically relevant ligand sites (LigASite ) http://www.bigre.ulb.ac.be/Users/benoit/LigASite/ Dessailly et al., 2008
Structural motif databases (MALISAM) http://prodata.swmed.edu/malisam/ Cheng et al., 2008
Patterns in non-homologous tertiary structures (PINTS) http://www.russell.embl.de/pints/ Stark and Russell 2003
Database of phylogeny and alignment of members of SCOP
families, (PALI)

http://pauling.mbu.iisc.ernet.in/ pali/ Gowri et al., 2003

Database of structural motifs in proteins (SMotif) http://caps.ncbs.res.in/SMotif/index.html Pugalenthi et al., 2007
Database for prediction of protein-protein interactions
(POINT)

http://insilico.csie.ntu.edu.tw:9999/point/ Huang et al., 2004

Database of surface patches (SURFACE) http://cbm.bio.uniroma2.it/surface/ Ferre et al., 2004
Database of conformational angles in protein structures
CADB-3.0

http://cluster.physics.iisc.ernet.in/cadb/ Gopalakrishnan et al. 2007
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analysis of b-prism-I or jacalin-like lectins shows
that hyper-variability in the binding site loops
generates carbohydrate recognition diversity. The
study, also predicted that a spectacular variety of
quaternary associations would be possible in this
family of lectins that have implications for glycan
recognition, a new type of association subsequently
proved to exist in the crystal structure of banana
lectin (Singh et al., 2004). The study also helped in
identifying that BL3, a loop housing a conserved
aspartic acid in the binding site of this family
of proteins, with its invariant conformation to
be a determinant of lectin activity, by generating
carbohydrate recognition capability, whereas a
multitude of factors such as sequence and lengths of
other loop regions in the vicinity dictate specificity
(Raval et al., 2004).

3.4. Machine learning algorithms for classification
and structure prediction

Machine learning approaches help in identifying the
features whose selection leads to higher accuracies
of prediction and hence providing biological
insights. Support vector machine (SVM) is an
optimization formulation strategy of classifying
a given set of points in feature space into two
classes. SVM based classifiers have been used
in a variety of aspects of structural biology,
for example fold level classification of proteins
(Shamim et al., 2007), prediction of protein–
protein interaction regions on the surface of protein
(Bradford and Westhead 2005), prediction of MHC
binding peptides (Donnes and Elofsson 2002), turn
prediction of amino acid sequences (Meissner et
al., 2008). Neural networks are based on arriving
at a relationship between input features to result
in the required output. The relationship between
features often tends to be non-obvious. (Holley
and Karplus 1989) present a neural network based
approach for determination of secondary structures
in proteins. (Bock and Gough 2002) use support
vector regression for estimating the free energy of
binding for a ligand for use in virtual screening.
There have been several methods developed to derive
various structural features from protein sequences as
well, examples of which are prediction of secondary
structures (Raghava et al., 2002) and prediction of
trans-membrane helices in proteins (Ganapathiraju
et al., 2008).

4. Function annotation through
Sub-structure derivation and comparison

What ultimately matters for a biological system to
perform its role is the ability for a given protein
to do a particular task, but not whether a given
protein has a particular sequence or structure. There

are a number of examples in the literature, which
illustrate that structures convey the ‘meaning’, more
efficiently than sequences, here ‘meaning’ referring
to the ‘function’ of the protein. On the other
hand, there are also a number of instances, which
illustrate that a particular ‘function’ is achieved
by proteins whose sequences and structures are
dissimilar. For example, at least three different
proteins with different folds and architectures
recognize mannose and exhibit mannose-mediated
physiology (Ramachandraiah and Chandra, 2000).
In other words, structures also fail to convey the
‘meaning’ in many cases. We do not yet know if this
failure is because of our inability to recognize any
similarities in such seemingly dissimilar proteins
or it is simply because no similarities actually exist
among them.

Obviously, the success in deriving various
relationships is dependent on the methods used.
There are a number of sequence-based methods
such as BLAST and FASTA, which are used routinely
today for identifying sequence homologues. Newer
ways of comparing molecules and recognizing
similarities at various levels has been an area of
intense research, resulting in progress in many
fronts, such as the evolution of pattern recognition
methods applied to sequences (e.g., PSI-BLAST,
PRINTS, development of various substitution
matrices for use with database searching and
alignment protocols (BLOSUM), as well as in
the emergence of various fold-recognition (Gen-
threader (Guffin et al., 2000), 3D-PSSM(Kelley et
al., 2000) etc) and structure comparison methods
(DALI, VAST (Madej et al., 1995)). Most of
the sequence alignment methods are based on
recognizing common sequence patterns where as
the structural alignment methods are based on
recognition of common topological arrangement
of sub-structures (such as the secondary structural
elements).

4.1. Interaction fingerprints
Based on the premise that the precise 3-dimensional
disposition of key residues in a protein molecule
is what matters for its function, or what conveys
the ‘meaning’ for a biological system, but not what
means it uses to achieve this (Prasad et al., 2003;
2004), the concept of comparing two molecules
through their intra-molecular interaction networks
was explored, since these networks dictate the
disposition of amino acids in a protein structure. For
this, a method (HBPRINT) of comparing molecules
through their interaction patterns was developed.
Signature patterns, or fingerprints, of interaction
networks in pre-classified protein structural families
are computed using an approach to find structural
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equivalences and consensus hydrogen bonds. Such
fingerprints, when used as features to compare
protein molecules, have resulted in the identification
of new unexpected similarities. Structures of garlic
lectin and Charcot Leyden crystal protein belong
to two different folds, do not share any significant
sequence similarity, yet show similarities in their
interaction patterns, but interestingly have similar
function- that of carbohydrate binding (Prasad et al.,
2004). The problem however at this point of time,
in using this on a larger scale, lies in finding suitable
search algorithms that will compare fingerprints
which are discrete point sets, yet allowing for ‘gaps’.

4.2. Identification of functionally important
regions in the protein

A different level of understanding protein function
is to extract functionally important regions in
them and compare and classify them with an aim
of associating them with particular function(s).
It has long been recognized that understanding
ligand binding to a protein molecule holds the
key to understanding function of the molecule.
Even when protein structures are determined
crystallographically as a complex with a ligand,
a complete description of their binding sites is not
always obtained because they may not be complexed
with all the ligands required for the function of
the molecule or because the complexed ligands are
often substitutes of the natural ligands. A key step
in the process of gaining functional insights from
protein structures is therefore identification of all
relevant binding sites in protein molecules. A further
requirement for accurate identification of binding
sites comes from the observation of moonlighting of
protein molecules (Jeffery 1999; 2003), where many
protein molecules have been found to have more
than one function, quite often through different
binding sites or even different binding modes
at overlapping sites on the same protein. Even
where crystal structures are available, they are
rarely available as complexes with different ligands
that may be required for moonlighting, hence
making prediction by computational methods very
important. A number of methods have emerged in
the last decade for the task of locating binding sites
in proteins (An et al., 2005; Bhinge A 2004; Brady
and Stouten 2000; Brylinski et al., 2007; Chakrabarti
and Lanczycki 2007; Coleman and Sharp 2006;
Coleman et al., 2006; Goodford 1985; Hendlich
et al., 1997; Huang and Schroeder 2006; Kalidas
and Chandra 2008a; Peters et al., 1996; Kleywegt
and Jones 1994; Landon et al., 2007; Levitt and
Banaszak 1992; Liang et al., 1998; Soga et al., 2007;
Tong et al., 2008; Venkatachalam et al., 2003; Glaser
et al., 2006). They can be broadly classified into (a)

geometry based and (b) energy based methods. The
geometry based methods are generally known to be
faster while the energy based methods score better in
terms of high accuracy of the sub-pockets predicted.
Some examples of the geometry based methods are
LigsiteCSC (Huang and Schroeder, 2006), CASTP
(Liang et al., 1998), PASS (Brady and Stouten, 2000),
LigandFit (Venkatachalam et al., 2003), VOIDOO
(Kleywegt and Jones, 1994), APROPOS (Peters
et al., 1996), LIGSITE (Hendlich et al., 1997),
SURFNET(Glaser et al., 2006), while examples
of energy based methods are GRID (Goodford,
1985) Pocket finder (An et al., 2005), Q-SiteFinder
(Laurie and Jackson, 2005), desolvation based free-
energy models (Coleman et al., 2006) and solvent
mapping models (Landon et al., 2007). Roterman
and co-workers have also reported identification of
active sites based on the characteristics of the spatial
distribution of hydrophobicity in a protein molecule,
using a fuzzy-oil-drop model (Brylinski et al., 2007).
The different methods focus on different properties
such as size, hydrophobicity, energy potential,
solvent accessibility, desolvation energy or residue
propensity for representing and hence analyzing the
pockets. The chosen descriptor directly influences
the quality of prediction. Hence it is important to
explore use of different features to represent protein
molecules and subsequently predict binding sites.

Recently, we developed a new geometry based
method PocketDepth (Kalidas and Chandra 2008a;
http://proline.physics.iisc.ernet.in/pocketdepth/)
that divides a putative pocket into subspaces in a
grid and computes their depths within the pocket,
which is subsequently used to retain and cluster
only the high-depth subspaces, thus utilizing the
information of the neighbourhood of the relevant
atoms in putative sites. By considering depth in
the subspaces available in a pocket as defined and
implemented in our method, we gain to understand
how central and not merely how deep a given space
is to a pocket. These centrally located cells with
high-depth counts must be taken into account while
designing ligands for a pocket. High prediction
accuracies were obtained using this algorithm both
in terms of the number of correct predictions as
well as the extent of correctness of each prediction.
An example of a prediction using PocketDepth is
shown in Figure 3.

5. Site comparison
A given function could be conserved simply by
having similarities in some elements of the structure,
such as the binding site residues. A classic example
is the large family of serine proteases which are
classified into different sequence and structural
families, but all come under the functional class of
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Figure 3: Examples of binding site detection using PocketDepth in FabH from Mycobacterium tuberculosis
and a human HLA allele, from their protein structures. The sites are shown as meshes. The ligand in the
original crystal structures is also shown in both cases.

serine proteases due to the presence of the catalytic
triad (Carter and Wells., 1987). Comparison of
binding sites differ from comparison of whole
structures for two main reasons (a) the binding sites
are small containing only a few residues and (b)
these residues need not be contiguous in sequence.
Alignment of two sites containing discrete sets of
atoms involves evaluation of a huge number of
mappings. This makes it important to have efficient
algorithms with low time and space complexities
that are capable of identifying and ranking different
extents of similarities appropriately. With several
structural genomics projects as well as advances in
computational methods for structure prediction,
the structural databases are growing at a rapid pace,
providing experimental structures of thousands and
confident homology models of millions of protein
molecules. The need for large scale comparisons of
binding sites is hence accentuated. There are some
intuitive tools already available for such a purpose.
(An et al., 2005, Bindowski et al., 2004, Binkowski et
al., 2003; Bock et al., 2007, Brakoulias and Jackson
2004, Bron and Kerbosch 1973, Campbell et al.,
2003, Chaumette 2004, Gold and Jackson 2006a;b,
Kleywegt 1999, Kuhn et al., 2007; Minai et al., 2008,
Morris et al., 2005, Park and Kim 2006, Powers et al.,
2006, Stark and Russell 2003, Kalidas and Chandra,
2008b). SitesBase (Gold and Jackson 2006a;b) and
PINTS (Stark and Russell 2003) use a method based
on Geometric Hashing which involves selection
of triads of points representing atomic types and
positions in each site and comparing the triangles
formed by triads. Graph based methods in which
binding sites are represented as graphs identify

maximal common sub-graphs between a pair of
sites to find similarities between them. Alternately
a depth first traversal strategy is adopted to find
common set of nodes between a pair of graphs
connected by similar pattern of edges. Spherical
Harmonic (Morris et al., 2005) representation
of a binding site captures distribution of points
representing the site in terms of coefficients of
characteristic frequencies. Very recently, we have
developed a new algorithm called PocketMatch for
representing a binding site in a frame invariant
manner and comparison of pairs of sites based
on alignment of sorted sequences of distances
between pairs of points representing sites (Kalidas
and Chandra 2008b). In this, each binding site is
represented by 90 lists of sorted distances of pairs of
atoms, flagged with residue type information, thus
capturing both the shape and chemical nature of
amino acid residues in the site. The sorted arrays are
then aligned using a greedy incremental alignment
strategy and scored to finally obtain PMScore values
for each pair of sites. Perturbation analysis in
which a portion of the points representing the sites
were perturbed randomly both in their positions
and in their chemical types, showed that chance
similarities were virtually non-existent. An all versus
all comparison of about 1000 binding sites in
the PDBbind database using this algorithm also
demonstrated that shape information alone is
insufficient to discriminate between diverse binding
sites, which however can be overcome by combining
it with chemical nature of amino acids. An example
of finding similarities in unrelated proteins is
shown in Figure 4. ATP binding proteins (Stockwell
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and Thornton, 2006) and sugar binding proteins
(Ramachandraiah and Chandra, 2000) are some
more examples of proteins containing different folds
but have a common function in terms of the ligand
they recognize due to similarities in their binding
sites (Figure 5).

6. Protein–ligand interactions
One of the important aspects of present-day
molecular biology is to gain an understanding of
the molecular basis of the recognition phenomenon,
so as to understand how proteins are capable of
specific and reversible interactions with ligands.
This can be achieved by studying the inter-
relationship between protein structure, internal
molecular dynamics, guided by its intra-molecular
forces, influenced by other substances such as
allosteric factors and function in terms of ligand
binding, the inter-molecular forces involved,
driven by the thermodynamic components. The
measurement of thermodynamic parameters is
important because all reversible biomolecular
interactions involve a redistribution of non-covalent
forces. The most experimentally accessible of
the thermodynamic quantities occurring on a
protein going from the free unbound state to the
bound state is the uptake or release of heat or
enthalpy. A wide variety of experimental methods
are used for direct or indirect determination of
thermodynamic quantities and hence the ligand
binding strengths. These involve the calculation
of thermodynamic quantities from theoretical
relationships. For example, the enthalpy changes can
be determined from the temperature dependence of
the equilibrium binding or dissociation constant.
High sensitivity calorimetric measurements on the
other hand allow precise and direct determination
of the change in enthalpy values. Computationally,
the binding strengths can be measured by analysing
their extents of interaction judged by their structures.
Commonly used metrics such as interaction
energies, buried surface area upon complexation,
shape complementarity values (Cai et al., 2002) or
by simply analysing the number and nature of the
hydrogen bonds involved in interaction.

6.1. Deriving determinants of ligand recognition
We often encounter examples of proteins of the
same structural family but with subtle differences
in their binding sites, recognizing completely
different ligands and hence having completely
different functions. Good examples in this category
are the proteins adopting the TIM barrel fold.
Proteins in this fold have diverse functions
which include examples such as triose phosphate
isomerase exhibiting an isomerase function, whereas

tryptophan synthase that binds with a synthetase
function. On the other hand, we also encounter
examples of proteins from entirely different families,
yet capable of binding to the same ligand and as
consequence, have similar functions. The question
that these factors bring about is what makes a
protein capable of binding to the given ligand.
Structural bioinformatics has been on several
occasions used to derive critical determinants of
recognition of a given ligand by its cognate proteins.

An example of such analysis shown in Figure 5
illustrates similarities in the sites and conformation
of the phosphates of ATP in the P-loop containing
proteins. Another example is the study of several
carbohydrate binding proteins to identify common
minimum principles required for the recognition
of mannose, glucose and galactose, which indeed
form much of the basis for recognition of higher
sugars (Prabu et al., 2006). In each of the three
cases, proteins are indeed quite diverse, belonging
to different structural and functional families and
without any significant sequence similarities among
them. Yet, they all share a common feature of the
capability to recognize the same sugar- mannose,
glucose or galactose. To understand the recognition
principles in each case, the binding sites of each
of the structures in each dataset were compared.
Viewing them by aligning the individual sugars did
not indicate presence of any patterns in the various
sites. However, a search for similarities in the sites
led to an alignment in which the ligands, along
with their sites, were rotated about the axis of the
ligand such that an O2 or an O3 hydroxyl could
align with an O4 hydroxyl of the sugar from another
protein. Analysis of the structures, overlaid in the re-
oriented frameworks in all the three cases, lead to the
derivation of common patterns in the occurrences of
amino acid residues as well as in their relative spatial
distributions within each data set (Figure 6). The
study identifies an aspartic acid – O4 sugar hydroxyl
interaction to be highly conserved, which appears
to be crucial for recognition of all three sugars.
Other interactions are specific to particular sugars,
leading to individual fingerprints. Knowledge of
these determinants will be useful in functional
annotation of newer proteins as well as in lead
design and protein engineering.

Another example is the identification of
determinants of histamine recognition (Konkimalla
and Chandra 2003). Towards understanding
how histamine, a vital neurotransmitter, can
perform multiple physiological tasks, an analysis
of the different proteins that bind histamine was
carried out. Their structural comparison reveals
conformational rigidity of histamine. Yet, flexibility
in the modes of histamine binding was observed,
which appears to suit specific biological roles of the
proteins. These results will be helpful in developing
specific antihistamines.
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Figure 4: Similarities detected in the binding sites of HIV Protease and Chaperon regulator protease
containing Indinavir (PDB Ligand code - MK1) by using PocketMatch.

Figure 5: Superposition of ATP molecules in a variety of P-loop containing protein structures, indicating
high conservation in their phosphates, but more flexibility in the base and sugar conformations. Conserved
binding site residues in the proteins are indicated42.

6.2. Protein-Protein interactions
It is well understood that proteins do not work
in isolation and but require to interact with other
proteins and sometimes nucleic acids to maintain
normal physiology, since most biological processes
are carried out by macromolecular assemblies
and regulated through a complex network of
protein- protein interactions. Interactions are of
different types, the most important of them being
complex formation leading to large protein-protein

assemblies. An example of this category would
be a ribosome or a RuvABC complex required
for DNA recombination. Interactions can also be
mediated through sugar molecules present as part
of glycans that ride on proteins. Some interactions
can also be in the form of influences where a
given protein influences the function of another
through increase or decrease in the levels of the
associated metabolite, leading to feed-forward
or feed-back regulations. Understanding protein-
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Figure 6: A study showing glucose molecules in several different protein complexes after superposition of
glucose molecules (left) and after finding binding site similarities (right). The figure on the right indicate
that when re-orientation of sugar along with its site in one structure as compared to another is permitted,
similarities in the sites can be discerned, addressing the issue of ligand presentation.

protein interactions would pertain mainly to the first
category of interactions. A number of complexed
structures are being determined experimentally
and the current release of PDB contains several
protein-protein complexes, providing a wealth of
information on the nature of the interfaces and the
types of interactions that stabilize protein-protein
complexes. Experimental approaches studying
protein-protein interactions have certain limitations
and need to be complemented by computational
methods. Different types of interaction prediction
methods have emerged in the recent years, that
involve one or more of the methods that involve
consideration of gene neighbourhoods (Dandekar et
al., 1998) or phylogenetic profiles (Snel et al., 2000)
or detection of gene fusion (Enright and Ouzounis
2001) in another organism. These methods are all
based on sequence information and provide quick
information about possible protein-protein linkages.
They do not however tell us if the two proteins can
form a structural complex and where they do, there
is no information on the mode of interaction or
which segments of the two proteins may be involved.
Structure based methods (Jones and Thornton
1997) are required to address these issues, which are
becoming increasingly more feasible. Some of the
recently developed algorithms are FTDOCK (Gabb
et al., 1997) which involves rigid-body docking on
two biomolecules in order to predict their correct
binding geometry. Protein-protein interfaces are
generally larger, less conserved and often involve

a fair amount of hydrophobic residues, making it
difficult to detect as compared to that of protein-
small molecular recognition. Some other methods
depend upon identification and comparison of
surface patches (Jones and Thornton, 1997) on
protein surfaces, but methods in this category are in
general still in their infancy with a lot of scope for
improvement.

7. Structure based drug discovery
7.1. Target identification
Knowledge of the structure of the target
macromolecule helps us in estimating the feasibility
of the protein as a target and also facilitates
computational docking of the ligand molecule
into its binding site. Some examples of drugs
designed by structure-based methods are Zanamivir
and Oseltamivir (Alymova et al., 2005) (against
influenza neuraminidase), Nelfinavir, Amprenavir
and Lopinavir (targeting HIV protease (Nair et al.,
2002)). Prior to docking, it is important to identify
the binding site in the target protein, information for
which is available many times through the structures
of the complexes of the protein with its natural
substrate. Chemical modification or site-directed
mutagenesis data of the target protein can also
provide clues about the binding site residues, where
structures of complexes are not known.

7.2. Lead identification and optimization
A ‘lead’ can be viewed as a representative of
a compound series with sufficient potential to
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Figure 7: Docking of sialic acid to the binding site of influenza virus
haemagglutinin using AutoDock. The binding site is shown as a surface
and the docked pose of the ligand is shown in sticks.

progress into a full drug development programme.
From the times of total reliance on the intuition
of the medicinal chemist, the methods available
for lead identification have come a long way.
Computational methods used widely for this
purpose cater to two broad scenarios, first, where
the target macromolecular structure is known either
through experiment or through prediction and
second, where either such structural information
about a target is not available or the target
molecule is not even identified. For the first class,
structure-based design algorithms exist, which
utilise the detailed information about the precise
geometry and chemistry that exist at binding
sites of protein molecules, while for the second
class, the methods are predominantly based on
statistical correlations between the properties of a
series of ligand molecules with a testable biological
activity. Structure based drug design (SBDD)
has emerged to be a well established field for
designing appropriate these lead compounds or
small molecules to enhance or inhibit the activity
of the protein in question, when the structure of
the target protein and the binding site details are
known. Lead identification can be achieved in many
ways. The most common and the most successful
of them is to dock a given compound into an
approximately defined binding site of the protein,
which will establish if the ligand can bind to the
protein in a geometrically and energetically feasible
manner. When a library of compounds are available,
virtual screening techniques can be employed, which
range from gross one-dimensional property based

screening of ligands to high resolution docking
based screening. Very often a combination of
physicochemical properties of the ligands are used
in preliminary screening to select a small subset of
the library, for which detailed docking is performed.
Another method of identifying a lead compound is
to build it up in the binding site of the protein from
the basic building blocks or simple fragments. Each
approach has its own strengths and limitations, but
newer methods for more accurate lead identification
are being developed to overcome the limitations.

7.2.1. Docking
Docking refers to the optimal positioning of a

ligand molecule with respect to the binding site
of a target structure. Many methods have been
developed to perform ligand docking. The simplest
is the rigid-body docking (Kuntz et al., 1982),
which represents internal volume of the ligand
and void volume of the site by set of points and
evaluates all superposable substructures between the
two sets of points. Heuristic clique based searches
(Ewing and Kuntz 1997; DOCK). Rarey and co-
workers (1996) developed FlexX where the base
fragment of the ligand is placed into the binding
site considering complimentary interactions with
atoms of site using geometric hashing followed by
incremental addition of fragments to base fragment
to arrive at the structure of the given ligand. Many
possible energetically favourable conformations of
the ligand are generated and later clustered by pose
clustering based on root mean squared deviation
(Linnainmaa et al., 1988). Other methods available
for this purpose are based on molecular dynamics
simulations, stochastic search techniques such as
simulated annealing and Monte Carlo simulations,
and evolutionary algorithms (e.g. AUTODOCK
(Morris et al., 1999). An example of docking
sialic acid to influenza virus haemagglutinin is
shown in Figure 7. The strength of binding of
the ligand to the target is usually determined by
considering the intermolecular energies contributed
by the interaction forces arising from electrostatic,
hydrogen-bond, van der Waals and hydrophobic
interactions (Muegge and Martin 1999; Sobolev et
al., 1999). The contribution of the solvent in ligand
binding can also be explicitly considered. Quantum
chemical models for evaluating interaction potential
are also available (Xiang et al., 2004; Zoete et al.,
2003). There are numerous examples in literature
that report the use of docking in structure based
lead identification. In some cases, they also provide
a basis to rationalize relative affinities of a series of
ligands, determined experimentally. Some examples
of that from our work are designing appropriate
small molecules to inhibit the activity of epidermal
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growth factor receptor (Konkimalla et al., 2007),
rationalization of the binding affinities of a series
of conformationally locked thiosugars as potent α-
mannosidase inhibitors (Sivapriya et al., 2007) and
identifying molecular determinants of substrate and
inhibitor specificity of polyphenol oxidase (Kanade
et al., 2007).

7.2.2. Virtual high-throughput screening
As the promise of structure-based drug design

begins to be realised (Congreve et al., 2005), the
need for expanding to a larger scale is becoming
more acute. A common need in present-day drug
discovery therefore is to carry out a database
search to find probable ligands, also referred to
as ‘virtual screening’, so as to enrich biologically
active compounds during ‘lead’ identification. A
good example of this approach is the identification
of the lead compounds to replace the anti-cancer
drug Gleevec by overcoming the problem of drug
resistance. The structure of the ABL tyrosine
kinase, the target of Gleevec has been used to
identify two promising lead compounds, which
exhibited significant inhibitions in ABL tyrosine
phosphorylation assays (Peng et al., 2003).

On the computational front, development of
high performance methods for computationally
intense tasks such as docking, could lead to use of
structure-based methods in virtual screening of
millions of compounds for lead design. Towards this
goal, AutoDock, a widely used, genetic algorithm
based docking tool has been parallelized (Khodade
2007) enabling virtual screening, which would
otherwise have been prohibitive on a routine scale
due to the large computing times involved in
docking.

7.2.3. Ab-initio design
Having to design a lead compound when just

the structure of the protein molecule is available,
would be analogous to having a lock and finding a
key that fits into the keyhole. Ligand design however,
is much more complex since both the ligand and the
binding site can change their shapes to some extents
upon binding. One way of finding the key would be
to intuitively pick a few and test them or to screen
against a set of keys, which are similar in concept to
docking and virtual screening respectively. Another
way of finding the key would be to simply take the
components of the key and assemble it within the
key hole of the lock so as to get the right fit, an
approach that would be similar in concept to ab-
initio design. This method has the greatest advantage
of not being dependent on prior knowledge of a set
of ligands that would bind to the protein and can
be carried out with any protein whose structure is

known and the binding site identified. A number of
methods have been reported in literature, one of the
most popular methods being LUDI (Bohm 1992),
which uses a fragment-based approach. It suggests
how suitable small fragments can be positioned
into clefts of protein structures such as in an
active site of an enzyme, in such a way that
hydrogen bonds can be formed with the enzyme and
hydrophobic pockets are filled with hydrophobic
groups. The fragments are then scored in terms of
their interaction energies using an empirical scoring
function. Combinatorial chemistry has also been
used to create a large library of structures with
sufficient diversity, which is subsequently used for
screening. De novo molecular design methods have
been used to design new structures by sequentially
adding molecular fragments to a growing structure,
by adding functionality to an appropriately sized
molecular scaffold, or by adding fragments building
toward the center of a molecule starting from distant
sites thought to interact with the target. While in
principle, these approaches have the advantage of
generating diverse molecular structures, in practice,
only a few successes are reported, making ab initio
design more a goal and not as yet a reality.

7.2.3.1. Guided ab-initio design. Although,
there has been tremendous progress in the
development of algorithms to address various
aspects of structure-based drug design in the
recent years (Anderson, 2003), there is still a need
for improvement in methodology. For example,
methods developed for fragment-based ligand
design methods to bind at a given protein binding
site (Honma, 2003), has enabled ab-initio ligand
design, but do not have the intrinsic ability to pick
out and suitably weight the crucial interactions. As
a result, ligands designed with this approach do
not always exhibit the intended pharmacological
profiles. An effort made to address this issue, uses
recognition fingerprints derived from a structural
bioinformatics study, to carry out critical interaction
guided fragment-based design of lead compounds
targeted at the binding sites. An example with
mannose, galactose and glucose binding proteins
has been reported earlier (Prabu et al., 2006). Results
obtained from this approach have been shown to be
superior to those from standard ab-initio design
protocols. Guided design would be been useful
in significantly improving the definition of the
interaction search space and also in improving
the probabilities of identifying more native-like
ligands, which has implications for identifying leads
with better affinities and specificities in a drug-
design exercise. Identifying leads from a guided
search would also be useful in a database search by
narrowing down on the pharmacophore space as
well as the interaction space to be searched.
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7.3. Pharmacodynamic profiling
Most drugs in current clinical practice have
been designed without the advantage of detailed
knowledge of the interactions with various
molecules in the cell. Hence, it is not surprising
that almost every drug exhibits unwanted effects.
The reasons for these adverse effects are not well
understood in the majority of cases. Although,
not well explored in the literature, structural
bioinformatics has the potential to address several
issues in understanding the mechanism of drug
action and in designing improved drugs. An effort
made in that direction pertains to the analysis
of H2 antihistamines, which studies the cause
for the paradoxical side effect they exert. Based
on an understanding of histamine physiology, a
systems landscape consisting of several proteins
was identified that would be relevant to study the
pharmacodynamics of anti-histamines. Docking and
analysis of clinically used antihistamines into each
of the components of the identified system, resulted
in identifying histamine N-methyl transferase
(HNMT) as a potential unintended target for
H2-antihistamines. By unintentional inhibition
of HNMT, a protein that removes excess levels of
histamine by N-methylation, the drug leads to an
accumulation of large levels of histamine, leading
to the observed side effects (Figure 8: Vinod et al.,
2006). The study provides guidelines for the design
of safer H2-antihistamines. The method also has
the potential for application as a general strategy in
understanding drug effects.

7.4. Understanding drug resistance
Resistance to drugs used clinically is a major
problem that renders many drugs ineffective, and
has been increasingly on the rise. One of the
common ways by which resistance emerges is
the mutation of the target at the binding site,
reducing the affinity of the drug for the target.
Understanding the structural changes that take
place due to these mutations will help enormously
in modifying the structure of drugs such that
they overcome of the problem of that particular
mode of drug resistance. Some examples in this
direction are the computational study of resistance
patterns of mutant HIV-1 aspartic proteases towards
ritonavir and other antivirals and design of new
derivatives to overcome that (Altman et al., 2008,
Nair et al., 2002). Structural studies of HIV
reverse transcriptase complexes with non-nucleoside
inhibitors (Stammers, 2008) have contributed to the
design of newer generation inhibitors and identified
a number of features which may contribute to their
much improved resistance profiles. However, at
this stage, there are only a few successful examples

in the literature, which utilize structural level
studies to understand drug resistance. As more
and more structural data become available, it can be
expected that classification and hence prediction
of mutations that can give rise to resistance to a
class of drugs in particular protein families would
become more common. In the future, it would
also become possible to map the various single
nucleotide polymorphisms (SNPs) in the human
population in drug targets with their estimated
binding affinities of the drugs binding to them,
which would then provide a basis to understand
differences in phenotypic response between different
individuals for a given drug therapy.

8. Immunoinformatics and Structure based
vaccine design

The huge diversity in the components that
form our immune systems together with the
complexity in their interactions and regulation
make computational modelling and simulation
very important. With advances in high-throughput
technologies, experimental data of its various
aspects are being gathered at high rates,
leading to the genesis of the new discipline
immunoinformatics (Flower, 2007). At present,
it primarily refers to the management and
analysis of immunological data. However its larger
role would be in facilitating conversion of an
immunological problem to a computationally
tractable modelling problem, whose simulation
and analysis yields biologically meaningful and
interesting answers. Major developments in the
area include development of several immunological
databases (Lefranc et al., 2008), analysis of
the sequences of immunologically relevant
molecules, modelling and analysing their structures,
mathematical modelling of the immune systems and
machine learning approaches to recognize patterns
at various levels in the immunome (Petrovsky and
Brusic, 2002). Immunoinformatics can be expected
to aid in deciphering the immunome in the genome
consisting of immunoglobulins, T-cell receptors
and other relevant molecules, but more importantly
will provide a framework to understand the ways by
which the immune system to carry out is various
tasks.

Structural level knowledge has been obtained
for the antigen antibody interactions, and for many
MHC or HLA molecules. Structural bases for
antigen-antibody recognition has been discussed
in detail in a previous issue (Bhowmick et al.,
2007), which also provides molecular insights
into functional mimicry. Structural bioinformatics
methods are still not commonly used in either
antibody design or T-cell epitope design. Different
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Figure 8: An example of docking of drugs to H2 antihistamines to Histamine N-methyl transferase, a study that explains their adverse
effects.

approaches are being attempted though, that will
lead to ready incorporation of structural knowledge
in the various computational methods used for
vaccine design.

Drugs and Vaccines are entirely different in
terms of their application, mode of working or the
end uses. Yet, a structural view of the underlying
molecular mechanisms provides a unifying theme
for the design of drugs and vaccines. The term
‘structure-based design’ is now popular for drugs,
but has not been widely used as yet for vaccines. It
is however only logical for the vaccine design or
indeed any molecular design to be based on three-
dimensional atomic level structural information.
Vaccines have conventionally been designed without
the advantage of structural information, in many
cases without even the advantage of any molecular
level mechanistic information. The last few years
are witnessing a paradigm shift in vaccine design,
due to a surge in various ‘omics’ data as well as the
development of many computational methods to
analyse such data. Data mining from the genome
sequences of hundreds of pathogenic microbes
using novel algorithms are increasingly leading
to derivation and annotation of the potential
‘immunome’ in these microbes (Korber et al.,
2006). Vaccines can be broadly classified into
two categories- those that modulate the B-cell
responses such as antibodies or antigens that
generate antibodies in vivo and those that modulate
T-cell responses, which include whole proteins,
subunits, genes coding for specific subunits, specific
peptides as well as non-peptide T-cell antigens.

8.1. T-cell epitope identification
T-cell responses are known to play a vital role
in host immune responses upon exposure to

pathogens such as Mycobacterium tuberculosis and
the human immunodeficiency virus (HIV) in
normal physiological conditions. One of the key
requirements by an ideal vaccine candidate therefore
is to trigger T-cell responses, so as to checkmate the
pathogens. These are usually stimulated by short
peptides commonly referred to as epitopes, which
are derived from specific antigens from the pathogen
and recognized by major histocompatibility complex
(MHC) molecules or human leukocyte antigens
(HLA), in humans. The non-self peptide- MHC
complexes in turn recruit the T-cell receptors
upon which further reactions are triggered. It is
thus crucial to have a detailed understanding of
the recognition of the epitopes by various MHC
molecules. More than a hundred crystal structures
for several MHC and HLA alleles covering all the
three major loci have become available in the recent
years. A structural bioinformatics study of peptide-
HLA complexes to derive features that generate
recognition specificity, useful for guiding the design
process has been reported earlier (Dash et al., 2007,
Figure 9). Knowledge of the determinants of such
recognition will also be useful in reverse engineering
allele specific epitopes, which is likely to become
an important process in rational vaccine design.
Combination of statistical models and sequence
derived patterns with structural patterns have been
shown to be useful in identifying T-cell epitopes
in different protein families from the genome of
Mycobacterium tuberculosis (Vani et al., 2006, 2007;
Chaitra et al., 2005, 2008) as well as the H5N1
influenza virus (Parida et al., 2007).

In addition to B-cell antigen and T-cell
epitope predictions, structural bioinformatics
can also e expected to be of great value in
understanding several fundamental issues relevant
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Figure 9: Peptide binding space in the binding groove of HLA molecules. A structural bioinformatics study
showing peptides in different HLA-peptide complexes, after structural superposition of the individual HLA
molecules. The first residue (left most) and the ninth residue (right) of the nonameric peptides are shown
in cyan; second and eighth in yellow; third in green; fourth in red; fifth in grey, sixth in blue; seventh in
pink. Orange indicates those residues which in some cases present at the fifth and sixth positions of the
peptides do not align with any of the nine positions, but appear more like insertions to the nonameric
framework. HLA residues making conserved hydrogen bonds with the peptides in several alleles studied
here are shown in atom colour and labelled (Dash et al., 2007).

to rational vaccine design, such as recognition of
peptidomimetics, proteasomal cleavage, trimming,
transportation and presentation of peptides, self
versus non-self discrimination and T-cell receptor
recruitment. Structures of the protein molecules
involved in many of these processes are already
known, providing a framework to understand the
basis for various molecular events and subsequently
for higher confidence prediction of the antigens.

8.2. Perpetuation of Immunological Memory
Understanding the molecular mechanisms of
immunological memory assumes importance in
vaccine design. A mechanism for the maintenance
of immunological memory through the operation of
a network of idiotypic and anti-idiotypic antibodies
(Ab2) has been proposed earlier by Nayak and
co-workers (2001). Peptides derived from an
internal image carrying anti-idiotypic antibody
are hypothesized to facilitate the perpetuation of
antigen specific T cell memory through similarity
in peptide-MHC binding as that of the antigenic
peptide. Using a structural bioinformatics study,
the existence of such peptidomimics of the antigen
in the Ab2 variable region and their similarity of
MHC-I binding were identified (Gangadhar et al.,
2007). The analysis indicated that peptidomimics
from Ab2 variable regions have structurally similar
MHC-I binding patterns as compared to antigenic
peptides, indicating a structural basis for memory
perpetuation. Similar insights were obtained from
the study of anti-idiotypic antibodies specific to
rinderpest virus haemagglutinin (Vani et al., 2007).

9. Future perspectives
With rapid accumulation of structural data and
developments in the methods enabling their
comprehension, structural bioinformatics is likely
to make a significant impact across life sciences
disciplines. Various application areas such as
drug discovery and molecular design are likely to
automatically benefit from this in a much more
integral manner, than what we are witnessing
today. Despite the advances seen in many aspects
of this discipline, several questions still remain
open, warranting further research in the area. One
main requirement is the development of high
performance algorithms and tools to speed up
structural bioinformatics research and to increase
the levels of sensitivity in recognizing various
structural patterns that imply function. As seen
in the trend of the periodical CASP experiments,
advances in structure prediction are leading to the
generation of protein structures with higher levels
of confidence. With the development of better and
more efficient structure comparison methods at
fold and sub-structure levels, various structural
motifs and sub-structures that relate to a particular
function are likely to be identified, that would be
used in a more routine manner in annotation of the
function of a given protein. The coming years are
likely to see significant advances in understanding
and predicting protein-protein interactions, for
which development of newer, efficient and more
sensitive algorithms will be required.

The major advances in the area are likely to
happen when the ‘omics’ level systems models
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get integrated with detailed structural models of
individual molecules. Comprehension of large
volumes of complex information and its application
in a higher-order understanding of the biological
systems has necessitated the use of systematic
mathematical analyses. When these whole systems
can be understood at the level of the structures of
the individual molecules and their inter-molecular
interactions, whole new avenues will open up for
modeling systems and simulating them, that will
help us seek answers for a variety of questions.
In drug discovery too, advances in this area will
increasingly lead to the shift from ligand-driven
statistical models that have been in vogue in the last
decade or so, to the latest target-enriched structural
and simulation models.
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