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Conflict-Tolerant Specifications for Hybrid Systems
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Abstract | We propose a framework for developing and reasoning about 
hybrid systems that are comprised of a plant with multiple controllers, 
each of which controls the plant intermittently. The framework is based 
on the notion of a “conflict-tolerant” specification for a controller, and pro-
vides a modular way of developing and reasoning about such systems. 
We propose a novel mechanism of defining conflict-tolerant specifications 
for general hybrid systems, using “acceptor” and “advisor” components. 
We also give a decision procedure for verifying whether a controller satis-
fies its conflict-tolerant specification, in the special case when the compo-
nents are modeled using initialized rectangular hybrid automata.

1  Introduction
Modern embedded systems, ranging from washing 
machines to automobiles, contain a large number 
of features, many of which are realised as soft-
ware controllers which advise the base system (or 
plant) on how to conform to the feature’s speci-
fication. In the automotive industry for example, 
advanced features such as adaptive cruise control, 
collision avoidance, and electronic stability con-
trol15 are developed as part of a software product 
line, and a subset of these features are integrated 
into automotive products based on market needs 
and regulatory requirements. In such a setting, the 
controllers do not always agree on how the sys-
tem should behave, and could reach a point of 
“conflict” at which they offer conflicting advice. 
Such conflicts are usually resolved by a supervi-
sory controller which may for example shut down 
a controller of lower priority until the system 
reaches a state where the supervisor deems it safe 
to resume the feature. Controllers for each feature 
are typically thus only intermittently in control of 
the system during its execution.

One would like to reason about such systems 
in a compositional manner, beginning with the 
correctness of each feature with respect to the base 
system, and then inferring a property of the whole 
system. Unfortunately, traditional specification 
mechanisms such as a safety specification which 
prescribes a prefix-closed set of behaviours, are 
not adequate in this setting. Fig. 1(a) illustrates a 
classical safety specification for a feature, shown as 

a shaded cone growing to the right with time, and 
a system trajectory σ. Once the system behaviour 
leaves the specified safety cone, due to say the fea-
ture being suspended, the controller has no speci-
fication to adhere to once it is resumed at time t.

In this paper we provide a framework that 
addresses some of these problems in the setting of 
hybrid system models. Our solution is based on the 
notion of “conflict-tolerance” introduced in ear-
lier work in a discrete and real-time setting.6,7 The 
starting point of this framework is the notion of 
a conflict-tolerant specification. A conflict-tolerant 
specification is an advice function f that specifies 
for every plant behaviour σ, a prefix-closed set of 
all future behaviours that are considered safe. This 
is illustrated in Fig. 1(b), which shows the initial 
safety cone, and the safety cone specified after the 
system has exhibited behaviour σ. A controller 
for the plant satisfies a conflict-tolerant specifica-
tion f if after every plant behaviour σ (possibly not 
according to the controller’s advice), the subse-
quent behaviours of the plant that are according to 
the controller’s advice, are all contained in f(σ).

To illustrate how a conflict-tolerant specifica-
tion can capture a specifier’s intent more richly 
than a classical specification, consider a feature 
which requires the water level in a tank to be always 
between 2 and 4 cm. A classical specification for 
this feature is shown in Fig.  2(a). The invari-
ant 2  ≤  w  ≤  4 captures the desired requirement. 
If the controller for this feature is suspended due 
to a conflict, then the water level may rise above 
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4 cm or fall below 2 cm. The specification does 
not specify the desired behaviour if the water level 
falls below 2 cm or rises above 4 cm. In contrast, 
the tolerant specification in Fig. 2(b) specifies that 
ideally the water level should be between 2 and 
4  cm and if this is violated, then the water level 
must be brought between 2 and 4cm in less than 
2 seconds after resuming the controller (the time 
of resumption is indicated by the dotted line). The 
hybrid automaton shown in Fig. 2(b) specifies an 
advice function in the following way. It has two 
components: an “acceptor” automaton shown on 
the left side, and an “advisor” automaton shown 
on the right side (with shaded states). The safety 
language advised for a behaviour σ is obtained by 
running the acceptor automaton on σ to reach a 
configuration c, then applying the function given 
by the dashed edges to obtain a configuration d 
of the advisor automaton, and then collecting all 

possible behaviours allowed by the advisor autom-
aton starting from the configuration d. In a simi-
lar manner, the tolerant specification in Fig. 2(c) 
specifies that ideally the water level should be 
between 2 and 4 cm, and if this is violated, then 
the water level must be kept below 2  cm if it is 
currently below 2cm, and kept above 4 cm if it is 
currently above 4 cm.

We note that both the tolerant specifications of 
Fig. 2(b) and (c) induce the same classical specifi-
cation shown in Fig. 2(a), in that the behaviours of 
the plant that are always according to their advice 
coincide with the safety language of Fig.  2(a). 
However, as tolerant specifications they are quite 
different.

Let us now consider a system that comprises 
a base system B with multiple conflict-tolerant 
controllers C C1, ,… k, each of which are known 
to satisfy their conflict-tolerant specifications 

Figure 1:  (a) A classical (safety) specification, and (b) a conflict-tolerant specification.

Figure 2:  A classical specification (a), and conflict-tolerant specifications (b) and (c).
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S S1,… k, , respectively. Let these controllers be 
supervised by an arbitrary supervisory controller. 
Then we can give the following guarantee on the 
behaviour of the composed system: For each con-
troller C

i
, in each interval of time during which 

it’s advice is taken, the behaviour of the system in 
this interval is according to the tolerant-specifica-
tion S

i
. Thus, in each of the intervals in which it 

is in control, each controller does “the right thing”. 
This is illustrated in Fig. 1(b).

In this paper, our contributions are the fol-
lowing. We propose a novel mechanism to specify 
conflict-tolerant specifications for general hybrid 
systems, using acceptor and advisor components. 
We also show how we can algorithmically solve 
the controller verification problem—i.e. whether 
a controller satisfies its conflict-tolerant specifica-
tion with respect to a given base system—when the 
plant, the controller, and the acceptor and advisor 
components of the tolerant specification are given 
as initialized rectangular hybrid automata.

We would like to emphasize that our frame-
work is modular, in that each controller need only 
be specified, developed and verified once, regard-
less of which other controllers and supervisors it 
is integrated with.

In earlier work6–8 we have proposed a conflict-
tolerant framework in the discrete and timed set-
tings. Apart from the fact that we deal with more 
general behaviours in the form of signals, the 
work here departs from our earlier work in sev-
eral ways.

•	 In earlier work, our tolerant specifications 
comprised a single component with “advised” 
and “not-advised” transitions. The notion of 
acceptor and advisor components used in this 
paper have enabled us to create a more general 
specification mechanism, not limited to only 
“consistent” specifications.

•	 In the hybrid setting, the specification and con-
trol mechanisms are very different from each 
other. The specification speaks only about the 
plant behaviours, whereas the controller has to 
control the plant using only the input signals. 
This is in contrast to the earlier settings in 
which the tolerant specification is essentially 
itself a valid controller for the plant.

Related Work. In10 it is argued that system 
verification must be decomposed by features as 
every feature naturally has an associated prop-
erty to be verified. There are several approaches 
in the literature where features are specified as 
finite state automata and a conflict is detected 
by checking whether a state in which the features 

advise conflicting system actions, is reached.14 The 
problem of conflict detection at the specification 
stage is addressed in,9 where conflict between two 
feature specifications in temporal logic is detected 
automatically. Our approach of viewing features 
as controllers17 follows that of 5,19 in the setting 
of discrete events. In both these works, the main 
issue addressed is that of resuming the advice 
of a controller once it has been suspended due 
to conflict with a higher priority controller. In,5 
specifications are designed to anticipate conflict, 
by having two kinds of states, in-spec and out-of-
spec. When a controller’s specification is violated 
it transitions to an out-of-spec state from where 
it passively observes the system behaviour, till it 
sees a specified event that brings it back to an in-
spec state. Note that these controllers do not offer 
any useful advice in the out-of-spec states. In12 a 
rule-based feature model and composition opera-
tors for resolving conflicts based on prioritization 
is presented. However, the notion of a conflict-
tolerant specification (as against the feature imple-
mentation itself) is absent in their work.

In the hybrid setting, the work in18 synthe-
sizes controllers that satisfy safety specifications 
by computing a maximal safe set of states from 
which there exists a strategy to meet its specifica-
tion. Outside this safe set, the synthesized control-
ler allows any control input. In our setting this 
corresponds to synthesizing a controller (if one 
exists) for simple forms of tolerant specifications 
that comprise essentially the same safety cone for 
each possible behaviour.

The rest of the paper is structured as follows: 
After preliminary definitions, in Section  3 we 
introduce our control setting and illustrate con-
flict between two controllers. We then introduce 
the notion of conflict-tolerance in Section  4. In 
Section 5, we address the verification problem. We 
conclude with a discussion in Section 6.

2  Preliminaries
We model the behaviour of a hybrid system using 
the notion of a signal. Let W be a set of variables. 
A valuation for the variables W is a function 
w : →W R. We denote by W the set of all valua-
tions for the variables in W. For a valuation w over 
W and a subset X of W we denote by w X  the 
standard projection of the valuation to the vari-
ables in X.

A signal over a set of variables W is a function 
σ : I → W where the domain I is an interval [0,r) 
for some r ≥ 0 and σ has only finitely many points 
of discontinuity. Thus, there is a strictly increasing 
sequence of time points t t t t rn0 1 20= < < < < =  
such that for every k n∈ , , −0 1 , σ is continuous 
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in the interval I
k
 = [t

k
,t

k+1
). Note that in each inter-

val I
k
, σ is right continuous at t

k
. Our definition 

of a signal is similar to that of temporal behav-
iour in.4 We denote by W the set of all signals over 
the set of variables W. A signal language over W is 
simply a subset of W. For a signal σ over W and a 
subset X of W we denote by σ  X the projection 
of the signal σ to the set of variables X.

Let ε : [0,0) → W denote the empty signal, 
i.e. the signal whose domain is an empty set. Let 
σ

1
:[0,t

1
) → W and σ

2
:[0,t

2
) → W be signals in W. 

We define the concatenation of σ
1
 and σ

2
, denoted 

σ
1
 ⋅ σ

2
, to be the signal σ : [0,t

1
 + t

2
) → W given by

σ
σ
σ

( )
( )

( ) .
t

t t t

t t t t t t
=

<
− ≤ < +





1 1

2 1 1 1 2

if

if

For signals σ
1
, σ

2
 ∈W, we say that σ

1
 is a pre-

fix of σ
2
, denoted σ σ1 2≺ , if there exists a signal 

σ ∈W such that σ
1
 ⋅ σ = σ

2
. We say that a signal 

language L over W is prefix-closed if whenever 
τ ∈ L and σ τ≺ , we have σ ∈ L. For a set of signals 
L ⊆ W  and a signal σ, we denote by extσ(L), the set 
of extensions of σ that are in L, i.e.

ext L Lσ τ σ τ( ) { | }.= ∈ ⋅ ∈W

Our definition of a hybrid automaton is 
adapted from the definitions of hybrid automata 
in the literature.1,4,18 We consider “open” hybrid 
automata in which only some of the variables 
are controlled by the automaton. We first define 
the components of a hybrid automaton and give 
an informal description of what the components 
stand for. The way in which the components are 
used will be described formally when we define a 
trajectory of a hybrid automaton.

Definition 1 (Hybrid Automaton). A hybrid 
automaton is a tuple

	
H = →Q V C F init tcp, , , , , ,

where
•	 Q is a finite set of discrete variables with a finite 

range of values. The finite set Q is the set of 
modes of H.

•	 V is a finite set of state variables. The set V rep-
resents the states of H. A configuration of H is 
a pair (q,v) ∈ Q × V. The set C ⊆ V is the set 
of variables controlled by H , i.e. H constrains 
the initial value, continuous flow and resets of 
variables in C. Let C  denote the set of uncon-
trolled variables of H, i.e. C V C= \ .

•	 Let D = →C 2R  be the set of maps specifying 
a set of derivatives for variables in C. Then, 
F : Q → (V → D) assigns to each mode a flow 
condition which constrains the time derivative 
of the continuous flow of the controlled variables. 

Thus, for q ∈ Q and v ∈ V, F(q)(v) = d says that 
when current state of the system is v in mode q, 
the time derivative of the signal for each vari-
able c ∈ C must be in d(c). Alternatively, D can 
be looked at as defining a set-valued vector field 
D which prescribes the laws of continuous flow 
for the controlled variables. We assume that for a 
discrete variable u, the signals of u are constant 
in every mode.

•	 init ⊆ Q × C specifies a set of initial configura-
tions given by {(q,v) ∈ Q × V | (q,v x C) ∈ init}. 
Thus, init does not constrain the initial values of 
the uncontrolled variables.

•	 tcp : Q → 2V assigns to each mode a time can 
progress condition. If v ∈ tcp(q), then it is possi-
ble for the automaton H to evolve continuously 
from the state v.

•	 → ⊆ Q × 2V × (V → 2C) × Q is a jump relation. 
Thus for a jump e = (q, g, reset, q′) ∈→, q  is 
the source mode, q′ is the target mode, g is the 
subset of states from which the jump e is enabled 
and reset : V → 2C is a function which gives the 
possible values that the controlled variables can 
be reset to after the jump e.

For a mode q ∈ Q, by F
q
 we mean the flow 

condition F(q), and by tcp
q
 we mean the time 

can progress condition tcp(q). Note that init 
does not constrain the initial valuations of the 
uncontrolled variables. Similarly, the flow condi-
tion F

q
 does not constrain the continuous flow 

of the uncontrolled variables. However, the set 
tcp

q
 can be used to express any assumptions on 

the valuations of the uncontrolled variables and 
the controlled variables in a given mode q. It 
can also be used to force a change of mode and 
thereby change the laws of continuous flow pre-
scribed by F

q
.

Let (q,v), (q,v′) be configurations of H. Let 
τ : [a,b) → V be a function which is continuous 
in [a,b) and differentiable in (a,b). We say that H 
evolves continuously from (q,v) to (q,v′) with sig-
nal τ, written ( ) ( , )q, v → ′τ

q v , iff the following con-
ditions are satisfied:

•	 τ(a) = v,
•	 τ(b−) = v′ where τ(b−) is the left limit of τ at b,
•	 for all t ∈ [a,b),τ(t) ∈ tcp

q
, and

•	 For c ∈ C, let τ
c
 denote the signal τ { }c . Then 

for all t ∈ (a,b) and for all controlled variables 
c C t F t cc q∈ ∈, ( ) ( ( ))( )τ τ , i.e. the signal for the 
controlled variables obeys the flow condition 
of mode q.

We say that H jumps from (q, v) to (q, v′), writ-
ten (q,v) → (q′,v′) iff there exists (q,g, reset, q′)  
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∈→ such that v ∈ g, ′ ∈v vC reset( ), and 
′ =v v C C .

Definition 2 (Trajectory of H ). A trajectory 
of H starting from a configuration (q,v) is a pair of 
signals (v,σ) where v : I → Q and σ : I → V, satisfy-
ing the following conditions. Let I = [0,r) with r ≥ 0, 
and let t

0
, ⋅⋅⋅ ,tn

 be the union of the points of discon-
tinuity in the signals v and σ. Let I

k
 be the interval 

[t
k
,t

k+1
). Then

•	 Either v(0) = q and σ(0) = v, or v(0) = q′ and 
σ(0) = v′ and (q,v) → (q′,v′). Thus, the trajec-
tory starts either with a continuous evolution 
from (q,v) or with a jump from (q,v) to (q′,v′).

•	 For every k from 0 to n − 1, v is a constant func-
tion in the interval I

k
, and σ is continuous in the 

interval I
k
.

•	 Let q
k
 be the value of v in the interval I

k
. Then 

H can evolve continuously from (q
k
, σ(t

k
)) to 

( , ( ))qk ktσ +
−

1  via the signal σ restricted to the 
interval [t

k
,t

k+1
).

•	 For every k from 1 to n − 1
	 - � either ( , ( )) ( , ( ))q qk 1 k−

− →σ σt tk k , i.e. H 
jumps,

	 - � or q
k−1

 = q
k
 and ( )( ) ( )( )σ σ C t C tk k

− = , 
i.e. H does not jump and the controlled vari-
ables do not change.

Let Traj
(q,v)

(H  ) denote the set of trajectories 
of H starting from a configuration (q,v). Let 
Traj(H  ) denote the set of trajectories of H start-
ing from any (q,v) which satisfies init, i.e.

Traj Traj C init( { ( |( , ) }.( , )H H) )= ∈ ∈τ q v q v 

The signal language of H starting from a given 
configuration (q,v), denoted L

(q,v)
(H  ) is defined 

as L
(q,v)

(H  ) = {σ | ∃v : (v, σ) ∈ Traj
(q,v)

(H  )}. The 
signal language of H, denoted L(H  ), is defined 
as L(H  ) = {σ | ∃v : (v, σ) ∈ Traj(H  )} We say a 
hybrid automaton H  is deterministic if for any 
signal σ ∈ L(H  ), there is exactly one trajectory of 
the form (v,σ) ∈ Traj(H  ).

Let X ⊆ V and let τ : [0,r) → X be a signal 
over X. We define the configurations of H after τ, 
denoted configH ( )τ , to be

config v Traj v r
r v

H H( ) {( , )| ( , ) ( ) . . ( )
( )

τ σ
σ σ

= ∃ ∈ =
=

−

−
q v qs t

and and  XX = τ}.

We define the language of H after σ to be

	
L L

config
σ

σ
( ) ( ).( , )

( , ) ( )

H H
H

) =
∈

q v
q v
∪

Let H
1
 = (Q

1
,  V,  C

1
,  F

1
, init

1
, tcp

1
, →

1
) and 

H
2
 = (Q

2
, V, C

2
, F

2
, init

2
, tcp

2
, →

2
) be two hybrid 

automata over the same set of variables V. The 
automata H

1
 and H

2
 may represent two con-

trollers that control the same input variables to 
a plant, and hence C

1
 ∩ C

2
 may not be empty. 

The synchronized product of H
1
 and H

2
, denoted 

H
1
||H

2
 is defined to be the hybrid automaton 

H = (Q,V,C,F, init, tcp, →) where

•	 Q = Q
1
 × Q

2
,

•	 C = C
1
 ∪ C

2
,

•	 Let D = →C 2R be a set of maps specifying 
a set of derivatives for variables in  C. Then 
F : Q → (V → D) is given by ∀q

1
, q

2
 ∈ Q, ∀v ∈ V, 

∀d ∈ D, d ∈ F (q
1
,q

2
)(v) iff d q vC F1 1 1∈ ( )( ) 

and d q vC F2 2 2∈ ( )( ),
•	 init ⊆ Q × C where ((q

1
,q

2
),c) ∈ init iff 

( , )q c1 1C  ∈ init
1
 and ( , )q c2 C2  ∈ init

2
,

•	 tcp : Q → 2V where tcp((q
1
,q

2
)) = tcp

1
(q

1
) ∩ 

tcp
2
(q

2
),

•	 ((q
1
,q

2
), g, reset, ( , )′ ′q q1 2 ) ∈→ if one of the con-

ditions below is satisfied:
	 - � q q g1 1 2q q= ′ ∃ ′, ( , , , )2 22 reset  ∈→

2
 s.t. g = g

2
             

and c ∈ reset(v) iff c vC reset2 2∈ ( ) and 
c v C C1 1= .

	 - � ( , , , )q g1 1 1reset ′q1  ∈→
1
, g = g

1
 and c ∈ reset(v) 

iff c vC reset1 1∈ ( ), c v C C2 2= , and 
q q2 2= ′.

	 - � ( , , , )q g1 1 1 1reset ′ ∈→q1 , ( , , , )q g2 2 2 2reset ′ ∈→q2 , 
g  =  g

1
 ∩ g

2
 and c ∈ reset(v) iff c vC reset1 1∈ ( ) 

and c vC reset2 2∈ ( ).
Proposition 1. Let H

1
 and H

2
 be two open hybrid 

automata. Then L L L( || ) ( ) ( )H H H H1 2 1 2= ∩ .

3  Controllers and Conflict
In this section we introduce our control setting, 
safety specifications, and conflict between con-
trollers. We use a running example to illustrate 
these notions.

We consider a control setting that is based on a 
partitioned set of variables (X,U,Y). Here X is the 
set of variables controlled by the plant, U is the set 
of input variables of the plant used by the control-
ler to control it and Y is the set of auxiliary vari-
ables used by the specification (for example clock 
variables to represent timing constraints).

Definition 3 (Plant) Let V = X ∪ U. A plant 
over (X,U,Y) is a deterministic hybrid automaton 
P over V, which controls the variables in X. We 
assume that the plant P is non-blocking in that if 
σ ∈ L(P), then Lσ ε( ) { }P ≠ .

As a running example, we consider a car 
under the control of two features: cruise control 
and electronic stability control. For the car, we 
use a simple model in which it is assumed that 
the friction retarding the motion of the car is 
proportional to the car’s speed. The equation of 
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motion can then be written as u bv mv− =  where 
u is the force imparted by the engine, v is the 
velocity, bv is the frictional force and m is the 
mass of the car.

A plant model of the car is shown in Fig. 3. 
The set of plant variables is X = {x, v, a

y
, cc} where 

x denotes the position of the car, v the velocity, 
a

y
 denotes the sensed lateral acceleration and cc 

is a discrete variable which denotes whether the 
cruise control feature is off (cc = 0) or on (cc = 
1). The set of input variables is U = {u} where u 
denotes the acceleration or braking force applied 
on the car. Initially, the position and velocity are 
zero, and cruise control is off. The flow condi-
tions of the plant are x v=  and v v ub

m m
= − + 1  

in all control states. We use the convention that 
if a (controlled) variable not mentioned in the 
reset of an edge, then its value unchanged in the 
reset.

Definition 4 (Controller). A controller over 
(X,U,Y) is a deterministic hybrid automaton 
C  =  (Q,  V,  U,  F,  init,  tcp, →) over V which con-
trols the variables in U. The controller C is valid 
with respect to a plant P over (X,U,Y) if C is non-
blocking with respect to P, i.e. if σ ∈ L(P ||C), 
then Lσ(P ||C) ≠ {ε}.

A classical safety specification over (X,U,Y), is 
a deterministic hybrid automaton H over X ∪ Y 
which prescibes a language L(H) representing the 
set of behaviours it considers safe. We note that 

the language L(H) is necessarily prefix-closed. Let 
P be a plant over (X,U,Y), C be a controller for P 
and S be a safety specification over (X,U,Y). We 
say that the controller C for P satisfies S if

L X L X( || ) ( ) .P C S ⊆

As an example, we consider a cruise control 
feature which should satisfy the following require-
ments once the driver turns on cruise control and 
sets a reference speed V

r
.

•	 There are two modes of operation: gradual 
mode and rapid mode.

•	 In the gradual mode, the rise time, i.e. the time 
it takes for the car to reach the reference speed, 
can be up to 20 seconds. In the rapid mode, the 
rise time must be less than 5 seconds.

•	 The steady state error must be less than a given 
threshold ε, that is |V

r
 − v| < ε.

Figure 4 shows a specification which captures 
the above requirements. If the difference between 
the current speed and the reference speed is greater 
than 10, then the car must rapidly accelerate so that 
the speed is equal to the reference speed within 5 
seconds. Otherwise, the car can gradually acceler-
ate to reach the reference speed within 20 seconds.

The controllers are implemented using pro-
portional, integral control. The input u is of the 
form [16]

Figure 3:  Plant model of car. Flow conditions (not shown in the diagram) are x v=  and v v ub
m m

= − + 1  in 
all control states.
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u t K V v t K V t x tp r i r( ) ( ( ) ( ( ))= − + ⋅ −

where K
p
 is the proportional gain and K

i
 is the 

integral gain. Figure 5 shows a controller that 
satisfies the given specification. For the rest of 
the paper, we fix the mass of the car m = 1000 kg, 
the coefficient of proportionality b = 50 N ⋅ s/m, 
the reference speed set by the driver V

r
 = 30 m/s 

and the steady state error threshold ε = 5% of V
r
. 

Figures 6 and 7 show the response of the control-
led system when cruise control is turned on with 
the reference speed V

r
 = 30 m/s and the car is run-

ning at 10 m/s and at 22 m/s respectively. The 
given implementation of the controller is valid 
with respect to the plant P and satisfies the cruise 
control specification S

cc
.

Now consider another feature called electronic 
stability control which is used to improve the sta-
bility of the car. When the car is traveling on a 
curve of radius r, the lateral acceleration is given 
by a

y
 = v2/r. The stability control feature requires 

the lateral acceleration to be under a certain 
threshold l

th
.

Figure 8 shows a specification for this fea-
ture which requires that if the lateral acceleration 
exceeds the threshold l

th
, then it must be brought 

under the threshold within 2 seconds.
Figure 9 shows the response of the control-

led system when stability control intervenes and 
reduces the speed by applying a braking force, 
thus reducing lateral acceleration below the 
given threshold. In this example, we set the lat-
eral acceleration threshold l

th
 to 0.7g  = 6.86 m/s2 

and assume that the car is traveling on a curve of 
radius 100 m.

We now illustrate the notion of conflict 
between controllers.

Definition 5 (Conflict). Let C
1
 and C

2
 be 

valid controllers for a plant P. The controllers C
1
 

and C
2
 are in conflict with respect to P, if there 

exists a behaviour τ in L(P||C
1
||C

2
) such that 

Lt(P||C
1
||C

2
) = {e}, i.e. after the plant behaviour τ, 

the controllers C
1
 and C

2
 do not agree on any exten-

sion of τ.
Consider the example plant behaviour shown 

in Fig. 10. The driver turns on cruise control 
when the car is traveling at a speed of 22 m/s 
(79 km/hr). Later, the car travels on a curve and 
the lateral acceleration exceeds the safety thresh-
old requiring stability control to intervene after 
23 seconds. The cruise control specification 
requires the car to be within 5% of the target 
speed of 30 m/s (108 km/hr) whereas the stabil-
ity control specification requires the speed to be 
reduced so that the lateral acceleration falls below 
the safety threshold.

Let us say the controllers are overseen by a 
supervisory controller, that intervenes in favour 
of stability control to continue with its advice 
while disregarding the advice of the cruise con-
troller. If the car now reaches a stable state where 
the lateral acceleration is within the threshold, and 
the superviser seeks to resume the cruise control 
feature, the cruise controller has no meaning-
ful specification to adhere to, since the plant’s 

Figure 4:  Cruise Control Specification Scc. Here y is a clock variable with y = 1.
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trajectory has already departed from its set of safe 
behaviours.

4  Conflict-Tolerant Specifications
We now introduce our notion of a conflict-
tolerant specification that addresses some of the 
issues with classical specifications brought out in 
the last section.

Definition 6 (Advice Function). An advice 
function over a set of variables W is a function 
f :W W→ 2  such that for every signal σ ∈W , f(σ) 
is a prefix-closed set of signals.

Let (X,U,Y) be a partitioned set of variables. 
A  conflict-tolerant specification over (X,U,Y) is 
simply an advice function over X.

Let P be a plant over (X,U,Y). Let C be a con-
troller for P. Let σ be a behaviour of the plant 
not necessarily generated under the control of the 
controller C. Then we can define the behaviour 
of the plant P controlled by C, after the plant 
behaviour σ, denoted Lc

σ ( || )P C , as follows. Sup-
pose the plant P has reached a configuration 
(p, (x,u)) after σ. Let the configuration reached 
by the controller C after observing σ  X  be 
(q, (x,u′)). Then Lc

σ ( || )P C  is defined to be the 
set of behaviours of P C||  from the configura-
tion ((p,q), (x,u′)). Thus, the state of the vari-
ables controlled by the plant remains the same, 
but the input configuration is u′ as advised by the 
controller C.

Figure 7:  Cruise Control Gradual Mode (Vr = 30 
m/s, Kp = 300, Ki = 25).

Figure 5:  Cruise control implementation. In gradual and rapid modes,   u K v K V xp i r= − + −( ).

Figure 6:  Cruise Control Rapid Mode (Vr = 30 m/s, 
Kp = 800, Ki = 40).
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Definition 7 (C satisfies f ). Let P be a plant 
over (X,U,Y) and let f be a conflicttolerant specifica-
tion over (X,U,Y). A controller C for P satisfies f iff 
for each σ ∈ L(P),

L X f Xc
σ σ( || ) ( ).P C  ⊆

Thus after any plant behaviour s over X, if the plant 
follows the advice of C, then the resulting behavior 
over X conforms to the safety language prescribed by 
f after observing s restricted to X.

We now describe a mechanism to define an 
advice function using hybrid automata. The 

mechanism will use an acceptor automaton and an 
advisor automaton as described below.

Definition 8 (Conflict-Tolerant Hybrid Autom-
aton). Let (X,U,Y) be a partitioned set of variables 
and let W = X ∪ Y. A conflict-tolerant hybrid autom-
aton over (X,U,Y) is a tuple S  ′ = (Acc, Adv, E) where

•	 Acc is a hybrid automaton over W called the 
acceptor. Let

Acc P W W F init tcp= →( , , , , , , ).1 1 1 1

�The acceptor automaton must be deterministic 
with respect to X, i.e. for all σ ∈L Acc X( ) , there is 
a unique trajectory τ of Acc such that τ σ X = .

•	 Adv is a deterministic hybrid automaton over W 
called the advisor. Let Adv = (Q, W, W, F

2
, init

2
, 

tcp
2
, →

2
).

•	 E ⊆ P × 2W × (W → 2W) × Q is the advice rela-
tion between the configurations of the acceptor 
Acc and the advisor Adv. For an edge e = (p, g, 
reset, q) ∈ E, p is a mode of Acc, g is the subset 
of states of Acc from which e is enabled, reset : 
W → 2W is a function which gives the states of 
the advisor Adv when the edge e is taken and q is 
a mode of the advisor Adv.

In addition, as defined below, the advice relation 
must be deterministic and it must not reset the varia-
bles in X. Let m

E
 : (P × W) → 2Q × W be the map induced 

by the advice relation E such that (q,w′) ∈ m
E
((p,w)) 

iff there exists e = (p, g, reset, q) ∈ E, w ∈ g and w′ ∈ 
reset(w). For all reachable configurations (p,w) of Acc, 
the map m

E
 must be such that |m

E
((p,w))| = 1 and if 

m
E
((p,w)) = {(q,w′)}, then ′ =w w X X . In the 

sequel we will treat m
E
 as a function (on the reach-

able states of Acc) that maps a reachable configuration 
(p,w) of Acc to a configuration (q,w′) of Adv.

The conflict-tolerant hybrid automaton S ′ 
above defines an advice function over the set 
of variables X as follows. Let σ be a signal in 
L Acc X( ) . Then there is a unique configuration 
(p,w) reached by σ in the acceptor automaton 
Acc. Let m

E
 ((p, w)) be (q,w′). Then we define the 

constrained signal language of S ′after σ, denoted 
Lc

σ ( )′S , to be L
(q,w′)(Adv).

The advice function f
S  ′ over X defined by the 

conflict-tolerant hybrid automaton S ′can now be 
defined to be

f
L X L Acc Xc

′ = ′ ∈




S

S

X
( )

( ) ( )

.
σ σσ  if

otherwise

Given a plant P, a controller C, and a conflict-
tolerant hybrid automaton S ′ over (X,U,Y), we 
say C satisfies S ′ with respect to P if C satisfies 

Figure 8:  Electronic stability control specification. 
Here z is a clock variable with z = 1.

Figure 9:  Electronic stability control implemen
tation.

Figure 10:  Conflict between cruise control and 
stability control.
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the conflict-tolerant specification f
S  ′ with respect 

to P.
We now illustrate these definitions with a cou-

ple of tolerant specification for the cruise control 
feature discussed in the previous section. Figure 11 
shows a tolerant specification for cruise control in 
which the automaton on the left side is the accep-
tor and the automaton on the right side (with 
shaded states) is the advisor. The transitions from 
the modes of the acceptor to the modes of the 
advisor denoting the advice relation, are shown 
with dotted arrows. If cruise control is turned on, 
then the advisor automaton advises to accelerate 
either in the gradual mode (when |V

r
 − v| < = 10) 

or in the rapid mode (when |V
r
 − v| > 10) unless 

|V
r
 − v| < ε in which case the advice is to continue in 

the steady mode. If the cruise control is turned off, 
then it can continue to be off or it can be turned 
on. This tolerant specification is a natural exten-
sion of the classical specification given in Fig. 4.

Figure 12 shows another tolerant specification 
for the cruise control feature. This specification 
requires that (i) if cruise control has been turned 

on for a long time (more than 20 seconds), then 
the car must rapidly accelerate irrespective of the 
magnitude of the difference between v and V

r 
, and 

(ii) if cruise control has been turned on (possi-
bly when |V

r
 − v| ≤ 10) but |V

r
 − v| is currently 

greater than 10, then the car must rapidly acceler-
ate. The acceptor automaton uses clock w to meas-
ure the time since the driver has turned on cruise 
control.

Note that both these tolerant specifications 
induce the same classical specification shown in 
Fig. 4, in that the behaviours of the plant that are 
always according to their advice coincide with 
the safety language of Fig. 4. However, as tolerant 
specifications they are quite different.

Figure 13 shows a controller that satisfies the 
tolerant specification ′S 1

 in Fig. 11 (but not the 
tolerant specification ′S 2).

Consider now the example plant under the 
control of the controller C

2
 of Fig. 13 and the con-

troller for stability control. After 20 seconds, the 
cruise control specification in the gradual mode 
requires the speed to be within 5% of the target 

Figure 11:  Tolerant cruise control specification ′S 1. Here y = 1.
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Figure 13:  Controller C 2 for tolerant specification ′S 1.

Figure 12:  Tolerant cruise control specification ′S 2. Here  y w= = 1.
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speed. However, stability control intervenes after 
23 seconds as the speed has to be reduced while 
traveling on a curve. Let us say the conflict between 
the controllers shown in Fig. 10 is resolved in 
favour of the stability controller, and subsequently 
cruise control is resumed after the conflict, as 
shown in Fig. 14. When cruise control is resumed, 
|V

r
 − v| > 10 and hence the advice changes to accel-

erate rapidly. Since C
2
 is a controller that satisfies 

the tolerant specification ′S 2, we have a guarantee 
that the controlled system conforms to the toler-
ant specification during the periods when C

2
 is in 

control (shown shaded in the figure).

5  Controller Verification
The verification problem for conflict-tolerant 
specifications, is the following: given a plant P, 
a conflict-tolerant hybrid automaton specifica-
tion S ′, and a controller C, does C satisfy S ′ with 
respect to P (see Section 4). We now show how 
this can be solved algorithmically when the plant 
P, controller C, and the tolerant specification 
S ′ are given as initialized rectangular automata. 
We say that a conflict-tolerant hybrid automaton 
S ′  = (Acc,Adv,E) is a conflict-tolerant initialized 
rectangular automaton when the acceptor Acc and 
the advisor Adv are initialized rectangular autom-
ata, and the advice relation E is rectangular in that 
if (p,g,reset,q) ∈ E, then g and reset(w) are rectan-
gular sets for all w.

We recall the basic definitions of rectangular 
automata from the literature.13 A rectangular set 
R n⊆ R  is of the form R Rn1 × ×  where each R

i
 

is a bounded or unbounded interval, i.e. R is a 
product of n intervals of the real line. In a rec-
tangular hybrid automaton, the sets init

q
, tcp

q
, F

q
 

are rectangular. Also, the set of states from which 
a jump is enabled (guard set) is rectangular and 
during the jump, if a variable is reset, it is set to 
a value within a fixed constant interval. In addi-
tion, in every mode, the derivative of each vari-
able always lies between two fixed bounds, for 

example x ∈ ,[ ]1 2 . These bounds may vary from 
one mode to another. A rectangular automaton 
is said to be initialized if for every variable v, after 
a jump from mode q to mode q′, either the flow 
condition of v remains the same or v has been 
reset.

Rectangular hybrid automata are an interest-
ing subclass of hybrid automata because they can 
be used for conservatively approximating sets of 
arbitrary hybrid trajectories. Thus, rectangular 
automata could be used to create abstractions 
of complex hybrid systems which can then be 
verified.3 Let s,t be two states of a hybrid autom-
aton H. In the reachability problem for hybrid 
automata, we are interested in checking whether 
there is a trajectory of H that starts at s and 
ends at t. It has been shown that the reachability 
problem for initialized rectangular automata is 
decidable.13

This result is obtained by first translating an 
initialized rectangular automaton R to an initial-
ized multirate automaton M

R
 in which each vari-

able evolves according to a constant, rational slope, 
which may be different in different control states. 
Then the multirate automaton M

R
 is translated 

into a timed automaton T
R

 for which the reach-
ability problem is known to be decidable.2

We now sketch the key ideas behind this two-
step translation. Let R be an initialized rectangu-
lar automaton of n variables. Consider a variable 
x

i
 with x l ui = ,[ ] in R. In the corresponding ini-

tialized multirate automaton M
R 

, each variable x
i
 

is replaced by two variables y
2i−1

 and y
2i
 such that 

2 1iy l− =  and 2iy u = . Let h n n
M : Q Q× → ×R R2  

be a function which maps the state space of M
R

 to 
that of R defined by

h i i iM (( , )) {( )| }q y q x y x y= , ≤ ≤ .−2 1 2

The variable y
2i−1

 tracks the least possible value 
of x

i
 and the variable y

2i
 tracks the greatest possible 

value of x
i
. The jump relation of M

R
 is constructed 

such that this continues to hold even after a jump. 
The initialized multirate automaton M

R
 is further 

translated into a timed automaton T
R

  by rescal-
ing the state space. Let h n n

I : Q Q× → ×R R2 2  
be a function which maps the state space of T

R
 to 

that of M
R

 defined by

h l ln n nI (( ,( ))) ( ( ))q y y q y y1 2 1 1 2 2,…, = , ⋅ ,…, ⋅

where l yi i=   if iy ≠ 0 and l
i
 = 1 otherwise.

We say that a set of configurations A of the 
automaton R is “representable” as a set of regions 
(see2) if there exists a set of regions B of the cor-
responding timed automaton T

R
 such that 

∪h h B AM I( ( )) = . Let Reach
H 

(I) denote the set 

Figure 14:  Conflict resolution.
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of states that can be reached from the set of states 
I using a trajectory of the automaton H.

Lemma 1. Let A be a set of configurations of an 
initialized rectangular automaton R which is rep-
resentable as a set of regions B. Then Reach

R
(A) is 

representable as the set of regions Reach T
R

(B).

Let S ′ = (Acc,Adv,E) be a conflict-tolerant 
initialized rectangular automaton. Recall that the 
advice relation E induces a map m

E
 which maps a 

configuration of the acceptor Acc to a configura-
tion of the advisor Adv. Corresponding to m

E
, we 

can obtain an equivalent map ′mE which maps a 
configuration (p,y) of the timed automaton cor-
responding to the acceptor, to a configuration 
(q,y′) of the timed automaton corresponding 
to the advisor, such that ( , ) (( , ))q y p y′ = ′mE  iff 
h h m h hEM I M I( ( , )) ( ( ( , )))q y p y′ =  (we lift m

E
 

to work on sets of configurations in the natural 
way).

Lemma 2. Let S ′ = (Acc, Adv, E) be a conflict-
tolerant initialized rectangular automaton. Let A be 
a set of configurations of an initialized rectangular 
automaton R representable as a set of regions B of 
T

R
. Then the set of configurations m

E
(A) is repre-

sentable as the set of regions ′m BE ( ).

Theorem 1. Given a plant P, a controller C 
for P and a conflict-tolerant initialized rectangu-
lar automaton S ′ = (Acc,Adv,E) over (X,U,Y) such 
that P and C are initialized rectangular automata, 
it is decidable to check whether C satisfies S ′ with 
respect to P.

Proof.  Given a deterministic rectangular 
hybrid automaton H , we note that it will be stuck 
in a mode q if both continuous evolution and dis-
crete jump are not possible from q. We can com-
plete H  by adding a trap mode t and then adding 
jump transitions q → t from every other mode q 
such that if the automaton gets stuck in a mode 
q, it can transition to t. We complete the advisor 
automaton Adv to obtain Adv′.

Let H P C1= ′|| || Acc and H P C2 = ′ ′|| || Adv  
where C ′ is obtained from C by renaming every 
variable u ∈ U to its primed version u′. In order 
to check if the controller C does not satisfy the 
tolerant specification S ′ with respect to P, it is 
necessary and sufficient to check if there exists a 
“trajectory” of the form:

i


H
H

1 1 2(( , , ), ) (( , , ), )
(( , , ), ),

p q a v p q a w
p q t w

→
′ ′ ′2

i.e. there exists a configuration ((p,q,a
1
), v) of H

1
  

reachable from an initial configuration of H
1
 and  

in H
2
, we can reach a trap configuration ((p′,q′,t), 

w′) from ((p,q,a
2
), w) such that v w X X= ,  

v w ′ =U U  and m YE (( , )) ( , )a v a w1 2 Y = . 
Thus, even after the plant follows the advice of the 
controller C from the configuration ((p,q,a

2
), w), the 

resulting plant behaviour violates the specification as 
the advisor automaton reaches a trap mode (recall 
that m

E
 maps a configuration of the acceptor to sets 

of configurations of the advisor).
In order to check whether a trap mode is reach-

able even after the plant follows the controller’s 
advice, we first translate the initialized rectangular 
automata H

1
 and H

2
 to the corresponding timed 

automata I H 1
 and I H 2

. Given

I I J JmE
 H H H H1 1 2 2Re ( ) ( ),ach → Reach

where J is the set of configurations of the advisor 
automaton reachable from the set of initial configu-
rations I of the acceptor automaton, we are interested 
in checking whether Re ( )achH 2 J  contains a con-
figuration of the form ((p′,q′,t),w′) for some p′,q′,w′. 
The reachability check can be carried out in IH 1

 and 
IH 2 as to whether I I mEI H H II I

1 1
Reach ( ) → ′

II H HI I
2 2

Reach . By Lemmas 1 and 2, it is 
sufficient to check if ReachI H 2

 contains a con-
figuration of the form ((_, _, t), _). This check can 
be carried out in time linear in the size of the region 
automata for IH 1

 and IH 2
.	 h

6  Conclusion
In this paper we have studied the problem of spec-
ifying and verifying controllers in a hybrid setting. 
We have introduced the notion of conflict-toler-
ant specifications in this setting and provided a 
novel hybrid automata based mechanism for resp-
resenting such specifications. We have also given 
a decision procedure for the problem of verifying 
whether a given controller satisfies a given conflict-
tolerant specification when the plant, controller 
and the specification are modeled as initialized 
rectangular automata.

If valid conflict-tolerant controllers can be 
constructed to satisfy tolerant specifi-cations, 
then supervisory controller design is considerably 
simplified, thus easing the system builder’s task 
of integrating independently designed control-
lers procured from different vendors. We note that 
each controller need only be specified, developed 
and verified once regardless of which other con-
trollers it is integrated with.

In earlier work in a discrete and timed setting, 
we had proposed a specification mechanism using 
automata with “advised” and “not-advised” tran-
sitions. This mechanism (as also the definition 
of an advice function) required specifications 
to be “consistent,” in that whenever a behaviour 
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τ was advised after a behaviour σ (i.e. τ ∈  f(σ)), 
the advice for σ ⋅ τ should be precisely the exten-
sions of τ in the advice after σ (namely f (σ)). This 
restriction precludes specifications like the one 
in Figure 2(b) which are natural requirements to 
specify when building controllers that can be sus-
pended and then resumed later. Such specifications 
can now be specified using the hybrid automaton 
based mechanism in this paper.

Given controllers that are verified to conform to 
their respective tolerant specifications, and a prior-
ity ordering on these controllers, one could ask for a 
supervisory controller that “maximizes” the advice of 
the controllers in that it ignores the advice of a con-
troller only if the controller’s advice conflicts with 
that of a higher priority controller. In a restricted 
setting of switched control (where a controller can 
only switch the discrete “mode” of the plant) we 
have shown how to build such a supervisory con-
troller. The reader is referred to11 for further details.

Received 20 August 2013.
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