
Journal of the Indian Institute of Science

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

© Indian Institute of Science

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in

R
ev

ie
w

s
1Department of Computer
Science and Automation,
Indian Institute of Science,
Bangalore, India.

deepakd@csa.iisc.ernet.in
gmadhu@csa.iisc.ernet.in

2General Motors R&D,
Warren.

ramesh.s@gm.com

3Mathworks India,
Bangalore.

Prahlad.sampath@ieee.org

Conflict-Tolerant Specifications for Hybrid Systems

Deepak D’Souza1, Madhu Gopinathan1, S. Ramesh2 and Prahladavaradan Sampath3

Abstract | We propose a framework for developing and reasoning about
hybrid systems that are comprised of a plant with multiple controllers,
each of which controls the plant intermittently. The framework is based
on the notion of a “conflict-tolerant” specification for a controller, and pro-
vides a modular way of developing and reasoning about such systems.
We propose a novel mechanism of defining conflict-tolerant specifications
for general hybrid systems, using “acceptor” and “advisor” components.
We also give a decision procedure for verifying whether a controller satis-
fies its conflict-tolerant specification, in the special case when the compo-
nents are modeled using initialized rectangular hybrid automata.

1  Introduction
Modern embedded systems, ranging from washing
machines to automobiles, contain a large number
of features, many of which are realised as soft-
ware controllers which advise the base system (or
plant) on how to conform to the feature’s speci-
fication. In the automotive industry for example,
advanced features such as adaptive cruise control,
collision avoidance, and electronic stability con-
trol15 are developed as part of a software product
line, and a subset of these features are integrated
into automotive products based on market needs
and regulatory requirements. In such a setting, the
controllers do not always agree on how the sys-
tem should behave, and could reach a point of
“conflict” at which they offer conflicting advice.
Such conflicts are usually resolved by a supervi-
sory controller which may for example shut down
a controller of lower priority until the system
reaches a state where the supervisor deems it safe
to resume the feature. Controllers for each feature
are typically thus only intermittently in control of
the system during its execution.

One would like to reason about such systems
in a compositional manner, beginning with the
correctness of each feature with respect to the base
system, and then inferring a property of the whole
system. Unfortunately, traditional specification
mechanisms such as a safety specification which
prescribes a prefix-closed set of behaviours, are
not adequate in this setting. Fig. 1(a) illustrates a
classical safety specification for a feature, shown as

a shaded cone growing to the right with time, and
a system trajectory σ. Once the system behaviour
leaves the specified safety cone, due to say the fea-
ture being suspended, the controller has no speci-
fication to adhere to once it is resumed at time t.

In this paper we provide a framework that
addresses some of these problems in the setting of
hybrid system models. Our solution is based on the
notion of “conflict-tolerance” introduced in ear-
lier work in a discrete and real-time setting.6,7 The
starting point of this framework is the notion of
a conflict-tolerant specification. A conflict-tolerant
specification is an advice function f that specifies
for every plant behaviour σ, a prefix-closed set of
all future behaviours that are considered safe. This
is illustrated in Fig. 1(b), which shows the initial
safety cone, and the safety cone specified after the
system has exhibited behaviour σ. A controller
for the plant satisfies a conflict-tolerant specifica-
tion f if after every plant behaviour σ (possibly not
according to the controller’s advice), the subse-
quent behaviours of the plant that are according to
the controller’s advice, are all contained in f(σ).

To illustrate how a conflict-tolerant specifica-
tion can capture a specifier’s intent more richly
than a classical specification, consider a feature
which requires the water level in a tank to be always
between 2 and 4 cm. A classical specification for
this feature is shown in Fig. 2(a). The invari-
ant 2 ≤ w ≤ 4 captures the desired requirement.
If the controller for this feature is suspended due
to a conflict, then the water level may rise above

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in404

4 cm or fall below 2 cm. The specification does
not specify the desired behaviour if the water level
falls below 2 cm or rises above 4 cm. In contrast,
the tolerant specification in Fig. 2(b) specifies that
ideally the water level should be between 2 and
4 cm and if this is violated, then the water level
must be brought between 2 and 4cm in less than
2 seconds after resuming the controller (the time
of resumption is indicated by the dotted line). The
hybrid automaton shown in Fig. 2(b) specifies an
advice function in the following way. It has two
components: an “acceptor” automaton shown on
the left side, and an “advisor” automaton shown
on the right side (with shaded states). The safety
language advised for a behaviour σ is obtained by
running the acceptor automaton on σ to reach a
configuration c, then applying the function given
by the dashed edges to obtain a configuration d
of the advisor automaton, and then collecting all

possible behaviours allowed by the advisor autom-
aton starting from the configuration d. In a simi-
lar manner, the tolerant specification in Fig. 2(c)
specifies that ideally the water level should be
between 2 and 4 cm, and if this is violated, then
the water level must be kept below 2 cm if it is
currently below 2cm, and kept above 4 cm if it is
currently above 4 cm.

We note that both the tolerant specifications of
Fig. 2(b) and (c) induce the same classical specifi-
cation shown in Fig. 2(a), in that the behaviours of
the plant that are always according to their advice
coincide with the safety language of Fig. 2(a).
However, as tolerant specifications they are quite
different.

Let us now consider a system that comprises
a base system B with multiple conflict-tolerant
controllers C C1, ,… k, each of which are known
to satisfy their conflict-tolerant specifications

Figure 1:  (a) A classical (safety) specification, and (b) a conflict-tolerant specification.

Figure 2:  A classical specification (a), and conflict-tolerant specifications (b) and (c).

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 405

S S1,… k, , respectively. Let these controllers be
supervised by an arbitrary supervisory controller.
Then we can give the following guarantee on the
behaviour of the composed system: For each con-
troller C

i
, in each interval of time during which

it’s advice is taken, the behaviour of the system in
this interval is according to the tolerant-specifica-
tion S

i
. Thus, in each of the intervals in which it

is in control, each controller does “the right thing”.
This is illustrated in Fig. 1(b).

In this paper, our contributions are the fol-
lowing. We propose a novel mechanism to specify
conflict-tolerant specifications for general hybrid
systems, using acceptor and advisor components.
We also show how we can algorithmically solve
the controller verification problem—i.e. whether
a controller satisfies its conflict-tolerant specifica-
tion with respect to a given base system—when the
plant, the controller, and the acceptor and advisor
components of the tolerant specification are given
as initialized rectangular hybrid automata.

We would like to emphasize that our frame-
work is modular, in that each controller need only
be specified, developed and verified once, regard-
less of which other controllers and supervisors it
is integrated with.

In earlier work6–8 we have proposed a conflict-
tolerant framework in the discrete and timed set-
tings. Apart from the fact that we deal with more
general behaviours in the form of signals, the
work here departs from our earlier work in sev-
eral ways.

•	 In earlier work, our tolerant specifications
comprised a single component with “advised”
and “not-advised” transitions. The notion of
acceptor and advisor components used in this
paper have enabled us to create a more general
specification mechanism, not limited to only
“consistent” specifications.

•	 In the hybrid setting, the specification and con-
trol mechanisms are very different from each
other. The specification speaks only about the
plant behaviours, whereas the controller has to
control the plant using only the input signals.
This is in contrast to the earlier settings in
which the tolerant specification is essentially
itself a valid controller for the plant.

Related Work. In10 it is argued that system
verification must be decomposed by features as
every feature naturally has an associated prop-
erty to be verified. There are several approaches
in the literature where features are specified as
finite state automata and a conflict is detected
by checking whether a state in which the features

advise conflicting system actions, is reached.14 The
problem of conflict detection at the specification
stage is addressed in,9 where conflict between two
feature specifications in temporal logic is detected
automatically. Our approach of viewing features
as controllers17 follows that of 5,19 in the setting
of discrete events. In both these works, the main
issue addressed is that of resuming the advice
of a controller once it has been suspended due
to conflict with a higher priority controller. In,5
specifications are designed to anticipate conflict,
by having two kinds of states, in-spec and out-of-
spec. When a controller’s specification is violated
it transitions to an out-of-spec state from where
it passively observes the system behaviour, till it
sees a specified event that brings it back to an in-
spec state. Note that these controllers do not offer
any useful advice in the out-of-spec states. In12 a
rule-based feature model and composition opera-
tors for resolving conflicts based on prioritization
is presented. However, the notion of a conflict-
tolerant specification (as against the feature imple-
mentation itself) is absent in their work.

In the hybrid setting, the work in18 synthe-
sizes controllers that satisfy safety specifications
by computing a maximal safe set of states from
which there exists a strategy to meet its specifica-
tion. Outside this safe set, the synthesized control-
ler allows any control input. In our setting this
corresponds to synthesizing a controller (if one
exists) for simple forms of tolerant specifications
that comprise essentially the same safety cone for
each possible behaviour.

The rest of the paper is structured as follows:
After preliminary definitions, in Section 3 we
introduce our control setting and illustrate con-
flict between two controllers. We then introduce
the notion of conflict-tolerance in Section 4. In
Section 5, we address the verification problem. We
conclude with a discussion in Section 6.

2  Preliminaries
We model the behaviour of a hybrid system using
the notion of a signal. Let W be a set of variables.
A valuation for the variables W is a function
w : →W R. We denote by W the set of all valua-
tions for the variables in W. For a valuation w over
W and a subset X of W we denote by w X the
standard projection of the valuation to the vari-
ables in X.

A signal over a set of variables W is a function
σ : I → W where the domain I is an interval [0,r)
for some r ≥ 0 and σ has only finitely many points
of discontinuity. Thus, there is a strictly increasing
sequence of time points t t t t rn0 1 20= < < < < =
such that for every k n∈ , , −0 1 , σ is continuous

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in406

in the interval I
k
 = [t

k
,t

k+1
). Note that in each inter-

val I
k
, σ is right continuous at t

k
. Our definition

of a signal is similar to that of temporal behav-
iour in.4 We denote by W the set of all signals over
the set of variables W. A signal language over W is
simply a subset of W. For a signal σ over W and a
subset X of W we denote by σ  X the projection
of the signal σ to the set of variables X.

Let ε : [0,0) → W denote the empty signal,
i.e. the signal whose domain is an empty set. Let
σ

1
:[0,t

1
) → W and σ

2
:[0,t

2
) → W be signals in W.

We define the concatenation of σ
1
 and σ

2
, denoted

σ
1
 ⋅ σ

2
, to be the signal σ : [0,t

1
 + t

2
) → W given by

σ
σ
σ

()
()

() .
t

t t t

t t t t t t
=

<
− ≤ < +





1 1

2 1 1 1 2

if

if

For signals σ
1
, σ

2
 ∈W, we say that σ

1
 is a pre-

fix of σ
2
, denoted σ σ1 2≺ , if there exists a signal

σ ∈W such that σ
1
 ⋅ σ = σ

2
. We say that a signal

language L over W is prefix-closed if whenever
τ ∈ L and σ τ≺ , we have σ ∈ L. For a set of signals
L ⊆ W and a signal σ, we denote by extσ(L), the set
of extensions of σ that are in L, i.e.

ext L Lσ τ σ τ() { | }.= ∈ ⋅ ∈W

Our definition of a hybrid automaton is
adapted from the definitions of hybrid automata
in the literature.1,4,18 We consider “open” hybrid
automata in which only some of the variables
are controlled by the automaton. We first define
the components of a hybrid automaton and give
an informal description of what the components
stand for. The way in which the components are
used will be described formally when we define a
trajectory of a hybrid automaton.

Definition 1 (Hybrid Automaton). A hybrid
automaton is a tuple

	
H = →Q V C F init tcp, , , , , ,

where
•	 Q is a finite set of discrete variables with a finite

range of values. The finite set Q is the set of
modes of H.

•	 V is a finite set of state variables. The set V rep-
resents the states of H. A configuration of H is
a pair (q,v) ∈ Q × V. The set C ⊆ V is the set
of variables controlled by H , i.e. H constrains
the initial value, continuous flow and resets of
variables in C. Let C denote the set of uncon-
trolled variables of H, i.e. C V C= \ .

•	 Let D = →C 2R be the set of maps specifying
a set of derivatives for variables in C. Then,
F : Q → (V → D) assigns to each mode a flow
condition which constrains the time derivative
of the continuous flow of the controlled variables.

Thus, for q ∈ Q and v ∈ V, F(q)(v) = d says that
when current state of the system is v in mode q,
the time derivative of the signal for each vari-
able c ∈ C must be in d(c). Alternatively, D can
be looked at as defining a set-valued vector field 
D which prescribes the laws of continuous flow
for the controlled variables. We assume that for a
discrete variable u, the signals of u are constant
in every mode.

•	 init ⊆ Q × C specifies a set of initial configura-
tions given by {(q,v) ∈ Q × V | (q,v x C) ∈ init}.
Thus, init does not constrain the initial values of
the uncontrolled variables.

•	 tcp : Q → 2V assigns to each mode a time can
progress condition. If v ∈ tcp(q), then it is possi-
ble for the automaton H to evolve continuously
from the state v.

•	 → ⊆ Q × 2V × (V → 2C) × Q is a jump relation.
Thus for a jump e = (q, g, reset, q′) ∈→, q is
the source mode, q′ is the target mode, g is the
subset of states from which the jump e is enabled
and reset : V → 2C is a function which gives the
possible values that the controlled variables can
be reset to after the jump e.

For a mode q ∈ Q, by F
q
 we mean the flow

condition F(q), and by tcp
q
 we mean the time

can progress condition tcp(q). Note that init
does not constrain the initial valuations of the
uncontrolled variables. Similarly, the flow condi-
tion F

q
 does not constrain the continuous flow

of the uncontrolled variables. However, the set
tcp

q
 can be used to express any assumptions on

the valuations of the uncontrolled variables and
the controlled variables in a given mode q. It
can also be used to force a change of mode and
thereby change the laws of continuous flow pre-
scribed by F

q
.

Let (q,v), (q,v′) be configurations of H. Let
τ : [a,b) → V be a function which is continuous
in [a,b) and differentiable in (a,b). We say that H
evolves continuously from (q,v) to (q,v′) with sig-
nal τ, written () (,)q, v → ′τ

q v , iff the following con-
ditions are satisfied:

•	 τ(a) = v,
•	 τ(b−) = v′ where τ(b−) is the left limit of τ at b,
•	 for all t ∈ [a,b),τ(t) ∈ tcp

q
, and

•	 For c ∈ C, let τ
c
 denote the signal τ { }c . Then

for all t ∈ (a,b) and for all controlled variables
c C t F t cc q∈ ∈, () (())()τ τ , i.e. the signal for the
controlled variables obeys the flow condition
of mode q.

We say that H jumps from (q, v) to (q, v′), writ-
ten (q,v) → (q′,v′) iff there exists (q,g, reset, q′)

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 407

∈→ such that v ∈ g, ′ ∈v vC reset(), and
′ =v v C C .

Definition 2 (Trajectory of H). A trajectory
of H starting from a configuration (q,v) is a pair of
signals (v,σ) where v : I → Q and σ : I → V, satisfy-
ing the following conditions. Let I = [0,r) with r ≥ 0,
and let t

0
, ⋅⋅⋅ ,tn

 be the union of the points of discon-
tinuity in the signals v and σ. Let I

k
 be the interval

[t
k
,t

k+1
). Then

•	 Either v(0) = q and σ(0) = v, or v(0) = q′ and
σ(0) = v′ and (q,v) → (q′,v′). Thus, the trajec-
tory starts either with a continuous evolution
from (q,v) or with a jump from (q,v) to (q′,v′).

•	 For every k from 0 to n − 1, v is a constant func-
tion in the interval I

k
, and σ is continuous in the

interval I
k
.

•	 Let q
k
 be the value of v in the interval I

k
. Then

H can evolve continuously from (q
k
, σ(t

k
)) to

(, ())qk ktσ +
−

1 via the signal σ restricted to the
interval [t

k
,t

k+1
).

•	 For every k from 1 to n − 1
	 - � either (, ()) (, ())q qk 1 k−

− →σ σt tk k , i.e. H
jumps,

	 - � or q
k−1

 = q
k
 and ()() ()()σ σ C t C tk k

− = ,
i.e. H does not jump and the controlled vari-
ables do not change.

Let Traj
(q,v)

(H  ) denote the set of trajectories
of H starting from a configuration (q,v). Let
Traj(H  ) denote the set of trajectories of H start-
ing from any (q,v) which satisfies init, i.e.

Traj Traj C init({ (|(,) }.(,)H H))= ∈ ∈τ q v q v 

The signal language of H starting from a given
configuration (q,v), denoted L

(q,v)
(H  ) is defined

as L
(q,v)

(H  ) = {σ | ∃v : (v, σ) ∈ Traj
(q,v)

(H  )}. The
signal language of H, denoted L(H  ), is defined
as L(H  ) = {σ | ∃v : (v, σ) ∈ Traj(H  )} We say a
hybrid automaton H  is deterministic if for any
signal σ ∈ L(H  ), there is exactly one trajectory of
the form (v,σ) ∈ Traj(H  ).

Let X ⊆ V and let τ : [0,r) → X be a signal
over X. We define the configurations of H after τ,
denoted configH ()τ , to be

config v Traj v r
r v

H H() {(,)| (,) () . . ()
()

τ σ
σ σ

= ∃ ∈ =
=

−

−
q v qs t

and and  XX = τ}.

We define the language of H after σ to be

	
L L

config
σ

σ
() ().(,)

(,) ()

H H
H

) =
∈

q v
q v
∪

Let H
1
 = (Q

1
, V, C

1
, F

1
, init

1
, tcp

1
, →

1
) and

H
2
 = (Q

2
, V, C

2
, F

2
, init

2
, tcp

2
, →

2
) be two hybrid

automata over the same set of variables V. The
automata H

1
 and H

2
 may represent two con-

trollers that control the same input variables to
a plant, and hence C

1
 ∩ C

2
 may not be empty.

The synchronized product of H
1
 and H

2
, denoted

H
1
||H

2
 is defined to be the hybrid automaton

H = (Q,V,C,F, init, tcp, →) where

•	 Q = Q
1
 × Q

2
,

•	 C = C
1
 ∪ C

2
,

•	 Let D = →C 2R be a set of maps specifying
a set of derivatives for variables in C. Then
F : Q → (V → D) is given by ∀q

1
, q

2
 ∈ Q, ∀v ∈ V,

∀d ∈ D, d ∈ F (q
1
,q

2
)(v) iff d q vC F1 1 1∈ ()()

and d q vC F2 2 2∈ ()(),
•	 init ⊆ Q × C where ((q

1
,q

2
),c) ∈ init iff

(,)q c1 1C ∈ init
1
 and (,)q c2 C2 ∈ init

2
,

•	 tcp : Q → 2V where tcp((q
1
,q

2
)) = tcp

1
(q

1
) ∩

tcp
2
(q

2
),

•	 ((q
1
,q

2
), g, reset, (,)′ ′q q1 2) ∈→ if one of the con-

ditions below is satisfied:
	 - � q q g1 1 2q q= ′ ∃ ′, (, , ,)2 22 reset ∈→

2
 s.t. g = g

2

and c ∈ reset(v) iff c vC reset2 2∈ () and
c v C C1 1= .

	 - � (, , ,)q g1 1 1reset ′q1 ∈→
1
, g = g

1
 and c ∈ reset(v)

iff c vC reset1 1∈ (), c v C C2 2= , and
q q2 2= ′.

	 - � (, , ,)q g1 1 1 1reset ′ ∈→q1 , (, , ,)q g2 2 2 2reset ′ ∈→q2 ,
g  =  g

1
 ∩ g

2
 and c ∈ reset(v) iff c vC reset1 1∈ ()

and c vC reset2 2∈ ().
Proposition 1. Let H

1
 and H

2
 be two open hybrid

automata. Then L L L(||) () ()H H H H1 2 1 2= ∩ .

3  Controllers and Conflict
In this section we introduce our control setting,
safety specifications, and conflict between con-
trollers. We use a running example to illustrate
these notions.

We consider a control setting that is based on a
partitioned set of variables (X,U,Y). Here X is the
set of variables controlled by the plant, U is the set
of input variables of the plant used by the control-
ler to control it and Y is the set of auxiliary vari-
ables used by the specification (for example clock
variables to represent timing constraints).

Definition 3 (Plant) Let V = X ∪ U. A plant
over (X,U,Y) is a deterministic hybrid automaton
P over V, which controls the variables in X. We
assume that the plant P is non-blocking in that if
σ ∈ L(P), then Lσ ε() { }P ≠ .

As a running example, we consider a car
under the control of two features: cruise control
and electronic stability control. For the car, we
use a simple model in which it is assumed that
the friction retarding the motion of the car is
proportional to the car’s speed. The equation of

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in408

motion can then be written as u bv mv− =  where
u is the force imparted by the engine, v is the
velocity, bv is the frictional force and m is the
mass of the car.

A plant model of the car is shown in Fig. 3.
The set of plant variables is X = {x, v, a

y
, cc} where

x denotes the position of the car, v the velocity,
a

y
 denotes the sensed lateral acceleration and cc

is a discrete variable which denotes whether the
cruise control feature is off (cc = 0) or on (cc =
1). The set of input variables is U = {u} where u
denotes the acceleration or braking force applied
on the car. Initially, the position and velocity are
zero, and cruise control is off. The flow condi-
tions of the plant are x v= and v v ub

m m
= − + 1

in all control states. We use the convention that
if a (controlled) variable not mentioned in the
reset of an edge, then its value unchanged in the
reset.

Definition 4 (Controller). A controller over
(X,U,Y) is a deterministic hybrid automaton
C = (Q, V, U, F, init, tcp, →) over V which con-
trols the variables in U. The controller C is valid
with respect to a plant P over (X,U,Y) if C is non-
blocking with respect to P, i.e. if σ ∈ L(P ||C),
then Lσ(P ||C) ≠ {ε}.

A classical safety specification over (X,U,Y), is
a deterministic hybrid automaton H over X ∪ Y
which prescibes a language L(H) representing the
set of behaviours it considers safe. We note that

the language L(H) is necessarily prefix-closed. Let
P be a plant over (X,U,Y), C be a controller for P
and S be a safety specification over (X,U,Y). We
say that the controller C for P satisfies S if

L X L X(||) () .P C S ⊆

As an example, we consider a cruise control
feature which should satisfy the following require-
ments once the driver turns on cruise control and
sets a reference speed V

r
.

•	 There are two modes of operation: gradual
mode and rapid mode.

•	 In the gradual mode, the rise time, i.e. the time
it takes for the car to reach the reference speed,
can be up to 20 seconds. In the rapid mode, the
rise time must be less than 5 seconds.

•	 The steady state error must be less than a given
threshold ε, that is |V

r
 − v| < ε.

Figure 4 shows a specification which captures
the above requirements. If the difference between
the current speed and the reference speed is greater
than 10, then the car must rapidly accelerate so that
the speed is equal to the reference speed within 5
seconds. Otherwise, the car can gradually acceler-
ate to reach the reference speed within 20 seconds.

The controllers are implemented using pro-
portional, integral control. The input u is of the
form [16]

Figure 3:  Plant model of car. Flow conditions (not shown in the diagram) are x v= and v v ub
m m

= − + 1 in
all control states.

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 409

u t K V v t K V t x tp r i r() (() (())= − + ⋅ −

where K
p
 is the proportional gain and K

i
 is the

integral gain. Figure 5 shows a controller that
satisfies the given specification. For the rest of
the paper, we fix the mass of the car m = 1000 kg,
the coefficient of proportionality b = 50 N ⋅ s/m,
the reference speed set by the driver V

r
 = 30 m/s

and the steady state error threshold ε = 5% of V
r
.

Figures 6 and 7 show the response of the control-
led system when cruise control is turned on with
the reference speed V

r
 = 30 m/s and the car is run-

ning at 10 m/s and at 22 m/s respectively. The
given implementation of the controller is valid
with respect to the plant P and satisfies the cruise
control specification S

cc
.

Now consider another feature called electronic
stability control which is used to improve the sta-
bility of the car. When the car is traveling on a
curve of radius r, the lateral acceleration is given
by a

y
 = v2/r. The stability control feature requires

the lateral acceleration to be under a certain
threshold l

th
.

Figure 8 shows a specification for this fea-
ture which requires that if the lateral acceleration
exceeds the threshold l

th
, then it must be brought

under the threshold within 2 seconds.
Figure 9 shows the response of the control-

led system when stability control intervenes and
reduces the speed by applying a braking force,
thus reducing lateral acceleration below the
given threshold. In this example, we set the lat-
eral acceleration threshold l

th
 to 0.7g  = 6.86 m/s2

and assume that the car is traveling on a curve of
radius 100 m.

We now illustrate the notion of conflict
between controllers.

Definition 5 (Conflict). Let C
1
 and C

2
 be

valid controllers for a plant P. The controllers C
1

and C
2
 are in conflict with respect to P, if there

exists a behaviour τ in L(P||C
1
||C

2
) such that

Lt(P||C
1
||C

2
) = {e}, i.e. after the plant behaviour τ,

the controllers C
1
 and C

2
 do not agree on any exten-

sion of τ.
Consider the example plant behaviour shown

in Fig. 10. The driver turns on cruise control
when the car is traveling at a speed of 22 m/s
(79 km/hr). Later, the car travels on a curve and
the lateral acceleration exceeds the safety thresh-
old requiring stability control to intervene after
23 seconds. The cruise control specification
requires the car to be within 5% of the target
speed of 30 m/s (108 km/hr) whereas the stabil-
ity control specification requires the speed to be
reduced so that the lateral acceleration falls below
the safety threshold.

Let us say the controllers are overseen by a
supervisory controller, that intervenes in favour
of stability control to continue with its advice
while disregarding the advice of the cruise con-
troller. If the car now reaches a stable state where
the lateral acceleration is within the threshold, and
the superviser seeks to resume the cruise control
feature, the cruise controller has no meaning-
ful specification to adhere to, since the plant’s

Figure 4:  Cruise Control Specification Scc. Here y is a clock variable with y = 1.

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in410

trajectory has already departed from its set of safe
behaviours.

4  Conflict-Tolerant Specifications
We now introduce our notion of a conflict-
tolerant specification that addresses some of the
issues with classical specifications brought out in
the last section.

Definition 6 (Advice Function). An advice
function over a set of variables W is a function
f :W W→ 2 such that for every signal σ ∈W , f(σ)
is a prefix-closed set of signals.

Let (X,U,Y) be a partitioned set of variables.
A conflict-tolerant specification over (X,U,Y) is
simply an advice function over X.

Let P be a plant over (X,U,Y). Let C be a con-
troller for P. Let σ be a behaviour of the plant
not necessarily generated under the control of the
controller C. Then we can define the behaviour
of the plant P controlled by C, after the plant
behaviour σ, denoted Lc

σ (||)P C , as follows. Sup-
pose the plant P has reached a configuration
(p, (x,u)) after σ. Let the configuration reached
by the controller C after observing σ  X be
(q, (x,u′)). Then Lc

σ (||)P C is defined to be the
set of behaviours of P C|| from the configura-
tion ((p,q), (x,u′)). Thus, the state of the vari-
ables controlled by the plant remains the same,
but the input configuration is u′ as advised by the
controller C.

Figure 7:  Cruise Control Gradual Mode (Vr = 30
m/s, Kp = 300, Ki = 25).

Figure 5:  Cruise control implementation. In gradual and rapid modes,   u K v K V xp i r= − + −().

Figure 6:  Cruise Control Rapid Mode (Vr = 30 m/s,
Kp = 800, Ki = 40).

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 411

Definition 7 (C satisfies f ). Let P be a plant
over (X,U,Y) and let f be a conflicttolerant specifica-
tion over (X,U,Y). A controller C for P satisfies f iff
for each σ ∈ L(P),

L X f Xc
σ σ(||) ().P C  ⊆

Thus after any plant behaviour s over X, if the plant
follows the advice of C, then the resulting behavior
over X conforms to the safety language prescribed by
f after observing s restricted to X.

We now describe a mechanism to define an
advice function using hybrid automata. The

mechanism will use an acceptor automaton and an
advisor automaton as described below.

Definition 8 (Conflict-Tolerant Hybrid Autom-
aton). Let (X,U,Y) be a partitioned set of variables
and let W = X ∪ Y. A conflict-tolerant hybrid autom-
aton over (X,U,Y) is a tuple S  ′ = (Acc, Adv, E) where

•	 Acc is a hybrid automaton over W called the
acceptor. Let

Acc P W W F init tcp= →(, , , , , ,).1 1 1 1

�The acceptor automaton must be deterministic
with respect to X, i.e. for all σ ∈L Acc X() , there is
a unique trajectory τ of Acc such that τ σ X = .

•	 Adv is a deterministic hybrid automaton over W
called the advisor. Let Adv = (Q, W, W, F

2
, init

2
,

tcp
2
, →

2
).

•	 E ⊆ P × 2W × (W → 2W) × Q is the advice rela-
tion between the configurations of the acceptor
Acc and the advisor Adv. For an edge e = (p, g,
reset, q) ∈ E, p is a mode of Acc, g is the subset
of states of Acc from which e is enabled, reset :
W → 2W is a function which gives the states of
the advisor Adv when the edge e is taken and q is
a mode of the advisor Adv.

In addition, as defined below, the advice relation
must be deterministic and it must not reset the varia-
bles in X. Let m

E
 : (P × W) → 2Q × W be the map induced

by the advice relation E such that (q,w′) ∈ m
E
((p,w))

iff there exists e = (p, g, reset, q) ∈ E, w ∈ g and w′ ∈
reset(w). For all reachable configurations (p,w) of Acc,
the map m

E
 must be such that |m

E
((p,w))| = 1 and if

m
E
((p,w)) = {(q,w′)}, then ′ =w w X X . In the

sequel we will treat m
E
 as a function (on the reach-

able states of Acc) that maps a reachable configuration
(p,w) of Acc to a configuration (q,w′) of Adv.

The conflict-tolerant hybrid automaton S ′
above defines an advice function over the set
of variables X as follows. Let σ be a signal in
L Acc X() . Then there is a unique configuration
(p,w) reached by σ in the acceptor automaton
Acc. Let m

E
 ((p, w)) be (q,w′). Then we define the

constrained signal language of S ′after σ, denoted
Lc

σ ()′S , to be L
(q,w′)(Adv).

The advice function f
S  ′ over X defined by the

conflict-tolerant hybrid automaton S ′can now be
defined to be

f
L X L Acc Xc

′ = ′ ∈




S

S

X
()

() ()

.
σ σσ  if

otherwise

Given a plant P, a controller C, and a conflict-
tolerant hybrid automaton S ′ over (X,U,Y), we
say C satisfies S ′ with respect to P if C satisfies

Figure 8:  Electronic stability control specification.
Here z is a clock variable with z = 1.

Figure 9:  Electronic stability control implemen
tation.

Figure 10:  Conflict between cruise control and
stability control.

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in412

the conflict-tolerant specification f
S  ′ with respect

to P.
We now illustrate these definitions with a cou-

ple of tolerant specification for the cruise control
feature discussed in the previous section. Figure 11
shows a tolerant specification for cruise control in
which the automaton on the left side is the accep-
tor and the automaton on the right side (with
shaded states) is the advisor. The transitions from
the modes of the acceptor to the modes of the
advisor denoting the advice relation, are shown
with dotted arrows. If cruise control is turned on,
then the advisor automaton advises to accelerate
either in the gradual mode (when |V

r
 − v| < = 10)

or in the rapid mode (when |V
r
 − v| > 10) unless

|V
r
 − v| < ε in which case the advice is to continue in

the steady mode. If the cruise control is turned off,
then it can continue to be off or it can be turned
on. This tolerant specification is a natural exten-
sion of the classical specification given in Fig. 4.

Figure 12 shows another tolerant specification
for the cruise control feature. This specification
requires that (i) if cruise control has been turned

on for a long time (more than 20 seconds), then
the car must rapidly accelerate irrespective of the
magnitude of the difference between v and V

r 
, and

(ii) if cruise control has been turned on (possi-
bly when |V

r
 − v| ≤ 10) but |V

r
 − v| is currently

greater than 10, then the car must rapidly acceler-
ate. The acceptor automaton uses clock w to meas-
ure the time since the driver has turned on cruise
control.

Note that both these tolerant specifications
induce the same classical specification shown in
Fig. 4, in that the behaviours of the plant that are
always according to their advice coincide with
the safety language of Fig. 4. However, as tolerant
specifications they are quite different.

Figure 13 shows a controller that satisfies the
tolerant specification ′S 1

 in Fig. 11 (but not the
tolerant specification ′S 2).

Consider now the example plant under the
control of the controller C

2
 of Fig. 13 and the con-

troller for stability control. After 20 seconds, the
cruise control specification in the gradual mode
requires the speed to be within 5% of the target

Figure 11:  Tolerant cruise control specification ′S 1. Here y = 1.

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 413

Figure 13:  Controller C 2 for tolerant specification ′S 1.

Figure 12:  Tolerant cruise control specification ′S 2. Here  y w= = 1.

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in414

speed. However, stability control intervenes after
23 seconds as the speed has to be reduced while
traveling on a curve. Let us say the conflict between
the controllers shown in Fig. 10 is resolved in
favour of the stability controller, and subsequently
cruise control is resumed after the conflict, as
shown in Fig. 14. When cruise control is resumed,
|V

r
 − v| > 10 and hence the advice changes to accel-

erate rapidly. Since C
2
 is a controller that satisfies

the tolerant specification ′S 2, we have a guarantee
that the controlled system conforms to the toler-
ant specification during the periods when C

2
 is in

control (shown shaded in the figure).

5  Controller Verification
The verification problem for conflict-tolerant
specifications, is the following: given a plant P,
a conflict-tolerant hybrid automaton specifica-
tion S ′, and a controller C, does C satisfy S ′ with
respect to P (see Section 4). We now show how
this can be solved algorithmically when the plant
P, controller C, and the tolerant specification
S ′ are given as initialized rectangular automata.
We say that a conflict-tolerant hybrid automaton
S ′ = (Acc,Adv,E) is a conflict-tolerant initialized
rectangular automaton when the acceptor Acc and
the advisor Adv are initialized rectangular autom-
ata, and the advice relation E is rectangular in that
if (p,g,reset,q) ∈ E, then g and reset(w) are rectan-
gular sets for all w.

We recall the basic definitions of rectangular
automata from the literature.13 A rectangular set
R n⊆ R is of the form R Rn1 × × where each R

i

is a bounded or unbounded interval, i.e. R is a
product of n intervals of the real line. In a rec-
tangular hybrid automaton, the sets init

q
, tcp

q
, F

q

are rectangular. Also, the set of states from which
a jump is enabled (guard set) is rectangular and
during the jump, if a variable is reset, it is set to
a value within a fixed constant interval. In addi-
tion, in every mode, the derivative of each vari-
able always lies between two fixed bounds, for

example x ∈ ,[]1 2 . These bounds may vary from
one mode to another. A rectangular automaton
is said to be initialized if for every variable v, after
a jump from mode q to mode q′, either the flow
condition of v remains the same or v has been
reset.

Rectangular hybrid automata are an interest-
ing subclass of hybrid automata because they can
be used for conservatively approximating sets of
arbitrary hybrid trajectories. Thus, rectangular
automata could be used to create abstractions
of complex hybrid systems which can then be
verified.3 Let s,t be two states of a hybrid autom-
aton H. In the reachability problem for hybrid
automata, we are interested in checking whether
there is a trajectory of H that starts at s and
ends at t. It has been shown that the reachability
problem for initialized rectangular automata is
decidable.13

This result is obtained by first translating an
initialized rectangular automaton R to an initial-
ized multirate automaton M

R
 in which each vari-

able evolves according to a constant, rational slope,
which may be different in different control states.
Then the multirate automaton M

R
 is translated

into a timed automaton T
R

 for which the reach-
ability problem is known to be decidable.2

We now sketch the key ideas behind this two-
step translation. Let R be an initialized rectangu-
lar automaton of n variables. Consider a variable
x

i
 with x l ui = ,[] in R. In the corresponding ini-

tialized multirate automaton M
R 

, each variable x
i

is replaced by two variables y
2i−1

 and y
2i
 such that

2 1iy l− = and 2iy u = . Let h n n
M : Q Q× → ×R R2

be a function which maps the state space of M
R

 to
that of R defined by

h i i iM ((,)) {()| }q y q x y x y= , ≤ ≤ .−2 1 2

The variable y
2i−1

 tracks the least possible value
of x

i
 and the variable y

2i
 tracks the greatest possible

value of x
i
. The jump relation of M

R
 is constructed

such that this continues to hold even after a jump.
The initialized multirate automaton M

R
 is further

translated into a timed automaton T
R

 by rescal-
ing the state space. Let h n n

I : Q Q× → ×R R2 2
be a function which maps the state space of T

R
 to

that of M
R

 defined by

h l ln n nI ((,())) (())q y y q y y1 2 1 1 2 2,…, = , ⋅ ,…, ⋅

where l yi i=  if iy ≠ 0 and l
i
 = 1 otherwise.

We say that a set of configurations A of the
automaton R is “representable” as a set of regions
(see2) if there exists a set of regions B of the cor-
responding timed automaton T

R
 such that

∪h h B AM I(()) = . Let Reach
H 

(I) denote the set

Figure 14:  Conflict resolution.

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 415

of states that can be reached from the set of states
I using a trajectory of the automaton H.

Lemma 1. Let A be a set of configurations of an
initialized rectangular automaton R which is rep-
resentable as a set of regions B. Then Reach

R
(A) is

representable as the set of regions Reach T
R

(B).

Let S ′ = (Acc,Adv,E) be a conflict-tolerant
initialized rectangular automaton. Recall that the
advice relation E induces a map m

E
 which maps a

configuration of the acceptor Acc to a configura-
tion of the advisor Adv. Corresponding to m

E
, we

can obtain an equivalent map ′mE which maps a
configuration (p,y) of the timed automaton cor-
responding to the acceptor, to a configuration
(q,y′) of the timed automaton corresponding
to the advisor, such that (,) ((,))q y p y′ = ′mE iff
h h m h hEM I M I((,)) (((,)))q y p y′ = (we lift m

E

to work on sets of configurations in the natural
way).

Lemma 2. Let S ′ = (Acc, Adv, E) be a conflict-
tolerant initialized rectangular automaton. Let A be
a set of configurations of an initialized rectangular
automaton R representable as a set of regions B of
T

R
. Then the set of configurations m

E
(A) is repre-

sentable as the set of regions ′m BE ().

Theorem 1. Given a plant P, a controller C
for P and a conflict-tolerant initialized rectangu-
lar automaton S ′ = (Acc,Adv,E) over (X,U,Y) such
that P and C are initialized rectangular automata,
it is decidable to check whether C satisfies S ′ with
respect to P.

Proof.  Given a deterministic rectangular
hybrid automaton H , we note that it will be stuck
in a mode q if both continuous evolution and dis-
crete jump are not possible from q. We can com-
plete H  by adding a trap mode t and then adding
jump transitions q → t from every other mode q
such that if the automaton gets stuck in a mode
q, it can transition to t. We complete the advisor
automaton Adv to obtain Adv′.

Let H P C1= ′|| || Acc and H P C2 = ′ ′|| || Adv
where C ′ is obtained from C by renaming every
variable u ∈ U to its primed version u′. In order
to check if the controller C does not satisfy the
tolerant specification S ′ with respect to P, it is
necessary and sufficient to check if there exists a
“trajectory” of the form:

i


H
H

1 1 2((, ,),) ((, ,),)
((, ,),),

p q a v p q a w
p q t w

→
′ ′ ′2

i.e. there exists a configuration ((p,q,a
1
), v) of H

1

reachable from an initial configuration of H
1
 and

in H
2
, we can reach a trap configuration ((p′,q′,t),

w′) from ((p,q,a
2
), w) such that v w X X= ,

v w ′ =U U and m YE ((,)) (,)a v a w1 2 Y = .
Thus, even after the plant follows the advice of the
controller C from the configuration ((p,q,a

2
), w), the

resulting plant behaviour violates the specification as
the advisor automaton reaches a trap mode (recall
that m

E
 maps a configuration of the acceptor to sets

of configurations of the advisor).
In order to check whether a trap mode is reach-

able even after the plant follows the controller’s
advice, we first translate the initialized rectangular
automata H

1
 and H

2
 to the corresponding timed

automata I H 1
 and I H 2

. Given

I I J JmE
 H H H H1 1 2 2Re () (),ach → Reach

where J is the set of configurations of the advisor
automaton reachable from the set of initial configu-
rations I of the acceptor automaton, we are interested
in checking whether Re ()achH 2 J contains a con-
figuration of the form ((p′,q′,t),w′) for some p′,q′,w′.
The reachability check can be carried out in IH 1

 and
IH 2 as to whether I I mEI H H II I

1 1
Reach () → ′

II H HI I
2 2

Reach . By Lemmas 1 and 2, it is
sufficient to check if ReachI H 2

 contains a con-
figuration of the form ((_, _, t), _). This check can
be carried out in time linear in the size of the region
automata for IH 1

 and IH 2
.	 h

6  Conclusion
In this paper we have studied the problem of spec-
ifying and verifying controllers in a hybrid setting.
We have introduced the notion of conflict-toler-
ant specifications in this setting and provided a
novel hybrid automata based mechanism for resp-
resenting such specifications. We have also given
a decision procedure for the problem of verifying
whether a given controller satisfies a given conflict-
tolerant specification when the plant, controller
and the specification are modeled as initialized
rectangular automata.

If valid conflict-tolerant controllers can be
constructed to satisfy tolerant specifi-cations,
then supervisory controller design is considerably
simplified, thus easing the system builder’s task
of integrating independently designed control-
lers procured from different vendors. We note that
each controller need only be specified, developed
and verified once regardless of which other con-
trollers it is integrated with.

In earlier work in a discrete and timed setting,
we had proposed a specification mechanism using
automata with “advised” and “not-advised” tran-
sitions. This mechanism (as also the definition
of an advice function) required specifications
to be “consistent,” in that whenever a behaviour

Deepak D’Souza, et al.

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in416

τ was advised after a behaviour σ (i.e. τ ∈ f(σ)),
the advice for σ ⋅ τ should be precisely the exten-
sions of τ in the advice after σ (namely f (σ)). This
restriction precludes specifications like the one
in Figure 2(b) which are natural requirements to
specify when building controllers that can be sus-
pended and then resumed later. Such specifications
can now be specified using the hybrid automaton
based mechanism in this paper.

Given controllers that are verified to conform to
their respective tolerant specifications, and a prior-
ity ordering on these controllers, one could ask for a
supervisory controller that “maximizes” the advice of
the controllers in that it ignores the advice of a con-
troller only if the controller’s advice conflicts with
that of a higher priority controller. In a restricted
setting of switched control (where a controller can
only switch the discrete “mode” of the plant) we
have shown how to build such a supervisory con-
troller. The reader is referred to11 for further details.

Received 20 August 2013.

References
  1.	 Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,

Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin,

Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The

algorithmic analysis of hybrid systems. Theor. Comput.

Sci., 138(1):3–34, 1995.

  2.	 Rajeev Alur and David L. Dill. A theory of timed autom-

ata. Theor. Comput. Sci., 126(2):183–235, 1994.

  3.	 Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere

and George J. Pappas. Discrete abstractions of hybrid sys-

tems. Proc. of the IEEE, 88(7):971–984, Jul 2000.

  4.	 E. Asarin, O. Bournez, T. Dang, O. Maler and A. Pnueli.

Effective synthesis of switching controllers for linear sys-

tems. Proc. of the IEEE, 88(7):1011–1025, Jul 2000.

  5.	 Y.L. Chen, S. Lafortune and F. Lin. Modular supervisory

control with priorities for discrete event systems. In Conf.

on Decision and Control, pages 409–415. IEEE, 1995.

  6.	 Deepak D’Souza and Madhu Gopinathan. Conflict-toler-

ant features. In Computer Aided Verification, pages 227–239,

2008.

  7.	 Deepak D’Souza, Madhu Gopinathan, S. Ramesh and

Prahladavaradan Sampath. Conflict-tolerant real-time

features. In Quantitative Evaluation of Systems, pages 274–

283, 2008.

  8.	 Deepak D’Souza, Madhu Gopinathan, S. Ramesh and

Prahladavaradan Sampath. Supervisory control for real-

time systems based on conflict-tolerant controllers. In

Conference on Automation Science and Engineering, 2009.

  9.	 Amy P. Felty and Kedar S. Namjoshi. Feature specification

and automated conflict detection. ACM Trans. Softw. Eng.

Methodol., 12(1):3–27, 2003.

10.	 Kathi Fisler and Shriram Krishnamurthi. Decomposing

verification by features. IFIP Working Conference on Veri-

fied Software: Theories, Tools, Experiments, 2006.

11.	 Madhu Gopinathan. Conflict Tolerant Features. PhD

thesis, Department of Computer Science and Automa-

tion, Indian Institute of Science, Bangalore, Oct 2009.

12.	 Jonathan D. Hay and Joanne M. Atlee. Composing fea-

tures and resolving interactions. In SIGSOFT Found. of

Softw. Engg., pages 110–119, 2000.

13.	 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and

Pravin Varaiya. What’s decidable about hybrid automata?

J. Comput. Syst. Sci., 57(1):94–124, 1998.

14.	 Dirk O. Keck and Paul J. Kühn. The feature and service

interaction problem in telecommunications systems.

a survey. IEEE Trans. Software Eng., 24(10):779–796, 1998.

15.	 MSNBC. The top 10 safety features for the future –http://

www.msnbc.msn. com/id/23300261, 2008.

16.	 Rajesh Rajamani. Vehicle Dynamics and Control. Springer,

2006.

17.	 Peter J.G. Ramadge and W. Murray Wonham. The control

of discrete event systems. In Proc. of the IEEE, volume 77,

pages 81–98, 1989.

18.	 C.J. Tomlin, J. Lygeros and S. Shankar Sastry. A game the-

oretic approach to controller design for hybrid systems.

Proc. of the IEEE, 88(7):949–970, Jul 2000.

19.	 K.C. Wong, J.G. Thistle, H.H. Hoang, and R.P. Malhamé.

Supervisory control of distributed systems: Conflict reso-

lution. In Conf. on Decision and Control, pages 416–421.

IEEE, 1995.

Conflict-Tolerant Specifications for Hybrid Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 417

S. Ramesh earned his B.E. degree in Electronics
and Communication Engineering from Indian
Institute of Science Bangalore and his Ph.D.
degree in Computer Science & Engineering from
Indian Institute of Technology Bombay. He has

been with General Motors Global R&D for the last seven
years. Prior to that, he was on the faculty of the department
of Computer Science & Engineering at IIT Bombay, for more
than fifteen years. His areas of interests are Rigorous Software
Engineering, Embedded Systems and Real-Time Systems. This
work was done while the author was at GM R&D Bangalore.

Madhu Gopinathan completed his Ph.D. at
the Indian Institute of Science, Bangalore in
the area of formal verification after working
in the industry for several years. He is cur-
rently Chief Technology Officer at vMobo Inc.

working on data mining and machine learning. His current
interests include creating systems that can learn and adapt
to their environment.

Deepak D’Souza received his Ph.D. from
Chennai Mathematical Institute in 2000. Since
2003 he has been at the Department of Com-
puter Science and Automation of the Indian
Institute of Science, Bangalore, where he is cur-

rently an Associate Professor. Among his areas of interest are
specification and analysis of real-time and hybrid systems,
program analysis, and program verification.

Prahladavaradan Sampath received his BSc
degree in computer science from Brunel Univer-
sity, and both MSc and Ph.D. degrees in compu-
ter science from Imperial College, University of
London. He is currently a manager at MathWorks

India, where he leads a team developing formal methods based
tools for verification and validation of model-based designs. His
interests include program analysis, formal specification tech-
niques, and developing tools for rigorous development of cor-
rect software. This work was done while the author was at GM
R&D Bangalore.

