ETHANOL TOLERANCE OF SOME YEASTS

BY B. RANGANATHAN AND J. V. BHAT

(Fermentation Technology Laboratory, Indian Institute of Science, Bangalore-3)

Received March 15, 1958

Abstract

By suitable tests ethanol tolerance of twenty-eight strains of yeasts representing seven genera and several species had been determined. In the light of the results recorded, the strains have been classified into three groups, *viz.*, poor ethanol tolerant yeasts, moderately ethanol tolerant yeasts and high ethanol tolerant yeasts

In 1935 Delano and Menzincesco¹ found that incorporation individually of methanol and ethanol in low concentrations into the medium exerted a favourable influence on the growth and fermentative activity of yeasts. Subsequent work in this field was that of $\operatorname{Gray}^{3-6}$ who, in a series of extensive experiments, demonstrated the inhibitory effect of alcohol on different genera and species of yeasts. Gray classified these yeasts into five categories on the basis of their alcohol tolerance. In addition, he also found that (1) the utilization of glucose by yeast was progressively inhibited with increasing concentration of alcohol in the medium, and that (2) the alcohol tolerance of yeast varied inversely with lipid content. Troyer⁹ reported the limitation of cell population in yeast as a result of the inhibitory effect of ethanol. In continuation of his previous studies Gray and Sova⁶ studied the effects of different primary and secondary alcohols on the glucose utilization by yeast and demonstrated a correlation between molecular size and inhibitory action of the different alcohols.

In view of the above observations, it was thought desirable to study the alcohol tolerance of several yeasts in our collection with a view to select, if possible, one or more alcohol tolerant yeasts which on further studies would prove their suitability or otherwise for industrial exploitation. The criterion followed for the alcohol tolerance was the growth of the organism as measured by turbidity.

MATERIALS AND METHODS

(i) Material and media.—Twenty-eight yeast cultures, many of them belonging to different genera and species, were selected for this study. The basal medium prepared, in double strength, contained per litre: Glucose 20 g., $KH_2PQ_45g.$, $(NH_4)_2SQ_45g.$, $MgSQ_4.7H_2O$, 0.2 g., $FeSQ_4.7H_2O$ 0.002 g. and Difco yeast extract 2 g. The pH of the medium was found to be in the range of 4.5-5.0.

95% Ethyl alcohol obtained from commercial sources was refluxed for 6 to 8 hours with magnesium ribbons (fubbed with sand paper and cleaned before use). The refluxed alcohol was distilled using an all-glass distillation set. The alcohol so obtained was absolutely dry and this was rechecked with a Refractometer.

105

B. RANGANATHAN AND J. V. BHAT

Five ml. aliquots of the double strength medium were pipetted into culture tubes and absolute alcohol by volume was added under aseptic conditions. In the first series of experiments the absolute alcohol was incorporated into the medium in the following arbitrarily chosen quantities (v/v) of 0, 1, 5, 8, 10 and 12%.

Based on observations made on the above ranges, a further series of two experiments were carried out, one involving the incorporation of ethanol from 3 to 10%and the other from 8% to the extent of 14%. In both these experiments, the concentration of alcohol to be incorporated into the medium at the start of the experiment depended upon the capacity of the yeast strain in question to tolerate all the lower ranges. In all these three sets of experiments the total volume of the culture medium in the test-tube was made upto 10 ml. with adequate amounts of sterile distilled water.

(ii) Preparation of the inoculum.—Two loopfuls of yeast growth from a 24 to 48 hours agar slant were transferred into 5 ml. of dilute basal medium, the tube was well shaken for a few minutes and allowed to settle. The supernatant was then transferred into another sterile tube and the content of this tube was used as the inoculum, one loopful for each tube. The same loop was used for inoculation in all the subsequent experiments.

TABLE

Ethanol	Tolerance
	(Klett

	hanol % (v/v)		0			3			4	Ŀ		
•	e in Hrs.	24	48	96	24	48	96	24	48	96		
Saccharomyces steineri (¥4)		55	160	315	38	72	214		67	86		
Saccharomyces carlsbergensis (NCYC	210	350	355		••			••				
Saccharomyces marxianus (NCYC 1)		177	290	360				160	284	310		
Saccharomycodes ludwigii (NCYC S	364 A)	166	300	420								
Torulopsis utilis (NCYC 321)		96	157	210	98	154	236	90	140	234		
Torulopsis utilis var. major (NCYC	359 A)	110	218	375	l	••			••			
Torulopsis pulcherrima (NCYC 166	4)	134	260	305	İ							
Torulopsis dattila (Y ₂)	••	95	170	270				63	101	2 50		
Candida pulcherrıma (Y ₉)		70	158	280				64	105	19 2		
Schwanniomyces occidentalis (NCYC	183)	152	290	375		••						
Hansenula saturnus (NCVC 22)		123	177	325	85	130	2 54	73	1 2 0	220		

106

The culture tubes prepared in triplicates were incubated at room temperature $(24 \text{ to } 26^{\circ} \text{ C.})$ and were handshaken at intervals. At the end of the growth period, the yeast was centrifuged, supernatant poured out and the yeast growth was resuspended in 10 ml. of distilled water. Turbidity readings were recorded at the end of 24, 48 and 96 hours with a Klett-Summerson Colorimeter using 42 filter. Since growth measurements made upto 48 hours after the incubation were regarded as those of tolerant species, data regarding growths occurring after 96 hours, although were recorded, are not presented in this paper.

RESULTS AND DISCUSSION

The results are presented in Tables I and II. The yeast strains used in the present study could be classified broadly into three following categories on the basis of their capacity to grow in presence of low or high concentrations of ethanol.

(i) Poor Ethanol tolerant yeasts (between 3 and 6%) were: Saccharomyces steineri, Torulopsis pulcherrima, Candida pulcherrima and Hansenula saturnus.

(ii) Moderately Ethanol tolerant yeasts (between 6 and 16%) were: Saccharomyces carlsbergensis, Saccharomyces marxianus, Saccharomyces turbidans, Saccharomycodes ludwigii, Torulopsis utilis, Torulopsis utilis var. Major, Torulopsis.

ĩ

of Some Yeasts

Readings)

% Ethanc		9			8			7			6			5	
v/ v tolerated	96	48	24	96	48	24	96	48	24	96	48	24	96	48	24
5.0								••					55	25	
8-0	85			274	37		375	190	••	375	262		390	340	118
$7 \cdot 0$		••		230	•••		305	135	55	310	230	103	\$10	2 56	152
7.0				182		••	218	140		330	246	$7\dot{s}$		••	
8.0	10			57	12		170	67	28	192	162	62	210	118	66
8.0		••		45	42	••	252	59		310	135		330	178	64
6.0		••	ĺ							155	29			••	
7.0	8	•••		28	••	••	155	57		192	98	4 õ	220	125	32
6.0	ĺ	••	1		••		57			125	32	11	185	90	22
7.0	•	•••		195		•••	253	152	••	315	210	65			
5.0		••						••			•••		155	58	•••

										(Klett	
Yeast species and No.	Ethanol % (v/v)		0					9			
	Time in Hrs.	24	48	96	24	48	96	24	48	8 96	
Saccharomyces cerevisiæ (Standa	ard strain) 🔸	268	296	330	125	260	276	50	206	244	
Saccharomyces cerevisia (Y_1)		\$70	345	360	1						
Saccharomyces cerevisiæ (Y ₈)		100	264	375		••		23	88	220	
Saccharomyces cerevisia (Y10)	••	236	278	305	150	256	290	90	240	266	
Saccharomyces cerevisiæ (Y13)		112	24 0	355	72	190	320	55	158	290	
Saccharomyces cerevisia (Y16)	••	92	274	†	65	195	268	35	195	†	
Saccharomyces species (Y_{12})		116	242	340	83	140	310	50	163	246	
Saccharomyces species (Y_{15})		125	244	320		80	128				
Saccharomyces italicus (NCYC	108) .	390	430	430		••					
Saccharomyces turbidans (NCY)	C 124)	274	400	450	į	188	405	• ••	65	405	
Schuzosaccharomyces pombe (NC	YC 132)	140	320	380							
Schizosaccharomyces octosporus	(NCYC 131) ••	27	87	224		••	85		••	40	
Zygosaccharomyces priorianus (NCYC 176)	310	365	415		158	305	· • •		108	
Zygosaccharomyces barkeri (NC	YC 170)	90	204	268		32	163		22	114	
Candida guilliermondia (Y8)	••	95	162	250	52	148	234	. 	103	210	
Candida tropicalis (Y14)		142	244	3 05		••	137				
Saccharomyces ellipsoideus (NC)	YC 94)	305	420	4 50		••			••		
		1			1			1			

Ethanol Tolerance

TABLE

† Tube broken by accident, hence readings not taken.

dattila, Schwanniomyces occidentalis, Schizosaccharomyces octosporus, Zygosaccharomyces priorianus, Zygosaccharomyces barkeri, Candida tropicalis and Saccharomyces species (strains Y₃ and Y₁₅).

(iii) High Ethanol tolerant yeasts (between 10 and 13%) were: Saccharomyces cerevisiæ (Standard strain), Saccharomyces cerevisiæ (Strains Y1, Y10, Y13 and Y16), Saccharomyces species (Y_{12}), Saccharomyces italicus, Schizosaccharomyces pombe, Candida gulliermondia and Saccharomyces ellipsoideus.

In general, it is of interest to note here that whereas the lowermost limit of alcohol tolerance recorded after 48 hours of incubation, in this instance for Saccharomces steineri (Y14) and Hansenula saturnus (NCYC 22) is 5% and the highest

II of Some Yeasts Readings)

	10	10 11			11 12						13			14			% Ethano
24	48	96	24	48	96	24	48	96	24	48	96	24	48	96	v/v tolerated		
17	176	224		37	185										11.0		
12	90	244		12	78		••								11.0		
••	35	168					••						••		10.0		
17	170	256		42	186		••	2 8					••		11.0		
25	137	†		78	195		25	82					••		12.0		
••	180	238		65	162		••	40							11.0		
35	138	224		98	188		70	137		••	20		••		12.0		
	••									••			••		8.0		
••	260	375		90	355			290		••			••		11.0		
	••			••			••			••			••	I	9•0		
	••			24	176	•••		44		••			••		11.0		
	••									••			••		7•0*		
	••			••	i					••			••		8-0		
••	••	32		••	i					••			••		9.0		
•••	69	147		••	10		••			••			••		10.0		
							••			••			••		7.0*		
	••		••	150	350		20	305		••			••	ļ	12-0		

* Determined in the first series of experiments not reported in detail here.

limit for three yeasts, viz., Saccharomyces cerevisia (Y_{13}) , Saccharomyces species (Y_{12}) and Saccharomyces ellipsoideus (NCYC 94) is 12% (see Tables I and II), those recorded by Gray and Sova⁶ were of the order of 4.73 to 11.58% respectively. But it must be emphasized that these limits were arrived at by adopting different criteria for alcohol tolerance. It is also interesting to note that, generally speaking, only Saccharomyces and Schizosaccharomyces constitute the more tolerant of the genera put to test for ethanol tolerance.

It is of considerable interest to report here that one of the high tolerant yeasts, viz., Saccharomyces cerevisiæ (Y_{12}) isolated originally by Mody and Bhat' from pine-apple, produced only 3.75% (v/v) alcohol under aerated conditions and that

B. RANGANATHAN AND J. V. BHAT

it is extremely well suited for the production of yeast by exploitation of sugarcane molasses. It would appear therefore that this very yeast would be suitable for alcohol production from molasses but this would be a subject of a future communication.

The experimental methods and the analysis described above can give rise only to qualitative evaluations as to the capacity of a particular strain to tolerate increasing concentrations of ethanol. Since, according to Gray² the determination of alcohol tolerance of a particular strain offers a reliable criterion for the selection of a suitable strain for a particular formentation process, these studies offer some promise for selection of suitable strains for fermentation industry. In this concentration of alcohol (10 to 14%) in the distillery washes had already been developed and patented in this laboratory.⁸ The present studies merely indicate that Y_{13} and Y_{12} tolerate high concentration of ethanol, and that further studies on acclimatization of these peaks to high concentrations of glucose and subsequently alcohol would perhaps help to improve their ethanol tolerance further and render their suitability for industrial exploitation better.

REFERENCES

1.	Delano, N. T. and Menzincesco, M. D.		"Action des alcools methylique et ethylique sur le ferments solubles et figures. I. Action sur la levure de biere et sur," Bull. Soc. Chim. Biol., 1935, 17, 1805.
2.	Gray, W. D		"Studies on the alcohol tolerance of yeasts," J. Bacteriol., 1941, 42, 561.
3.			"The sugar tolerance of four strains of Distiller's yeast," <i>Ibid.</i> , 1945, 49 , 445.
4.		•	"The acclimatization of the yeast to high concentrations of glucose; the subsequent effect upon alcohol tolerance," <i>Ibid.</i> , 1946, 52 , 703.
5.		•	"Further studies on the alcohol tolerance of yeast; its rela- tionship to cell storage products," <i>Ibid.</i> , 1948, 55 , 53.
6.	and Sova, C.	•	"Relation of molecule size and structure to alcohol inhibition of glucose utilisation by yeast," <i>Ibid.</i> , 1956, 72, 349.
7.	Mody, B. N. and Bhat, J. V.	7.	"A suitable yeast, Saccharomyces cerevisue, for the com- mercial utilisation of sugarcane molasses," J. Univ. Bombay, 1955, 24 (Part 3 B), 47.
8.	Rao, S. R. A. N. and Sreenivasaya, M.		Patent Office Journal (Government of India), Patent No. 38823.
9.	Troyer, J. R.		"A relation between cell multiplication and alcohol tolerance in yeasts," Mycologia, 1953, 45, 20.

110