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Hyperspectral Imaging for Earth Observation: 
Platforms and Instruments

1  Introduction
Spectral imaging techniques have been gain-
ing popularity and provide spectral information 
of each pixel location of the image plane of the 
object under study. Multispectral, hyperspectral, 
and ultraspectral sensing are three main spectral 
imaging methods. Conceptually, there is no dif-
ference in between these methods. The differ-
ence lies in the number of images and spectral 
resolution within the spectral range. Hyperspec-
tral imaging is the convergence of imaging and 
spectroscopy enables acquiring spatial and 
spectral distributions of the object under test. 
Consequently, this provides physical, chemical 
composition, and geometrical feature informa-
tion. It consists hundreds or thousands of con-
tinuous spectral bands that generate a continuous 
spectral profile. Every material has its own unique 
spectral fingerprint. This enables us to identify 
material under test. Unlike hyperspectral imag-
ing, multispectral generates a discrete spectral 
fingerprint of the material under test. Generally, 
it is assumed that the ultraspectral imaging has 
finer spectral resolution than hyperspectral imag-
ing. Hyperspectral imaging is one of the most 
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Abstract | Hyperspectral imaging is one of the promising remote sensing 
techniques. This technique records the spatial and spectral information 
of the object under study. Consequently, it has been gaining momen-
tum in a number of Earth observing applications. The aim of this paper 
is to present the current trends of hyperspectral sensing from different 
platforms and instruments for various applications. For Earth observa-
tion, mobile platforms are  discussed which include spaceborne, air-
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public and private organizations in the past with some specific goals.
Keywords:  Hyperspectral imaging, Earth observation, Spaceborne, Airborne, Unmanned aerial system, 
Underwater vehicle

R
EV

IE
W

 
A

R
T

IC
LE

widely used spectral imaging techniques. It has 
been used in a number of applications, includ-
ing agriculture and food inspection1–4, biomedi-
cal applications5, 6, water resources7, 8, vegetation 
and forest9, 10, minerals detection and mapping11, 
surveillance and reconnaissance12, conservation 
of works of art13, 14, astronomy15, etc.

For Earth observation (EO) applications, 
hyperspectral imaging can be done using spa-
ceborne, airborne, unmanned aerial system 
(UAS), underwater vehicle, and ground-based 
sensing platforms. The aim of this article was 
to discuss hyperspectral image acquisition 
by moving platforms along with presenting 
some of the major hyperspectral instruments 
developed by various space agencies, private 
and public organizations across the world for 
different working environments. In the pro-
posed paper, we introduce a conceptual repre-
sentation of hyperspectral imaging, together 
with components, descriptions, and sensor 
simulators.
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2 � Hyperspectral Remote Sensing
Conventionally, spectral remote sensing (mul-
tispectral) sensors such as Thematic Mapper 
(TM) and Enhanced Thematic Mapper (ETM)+ 
acquire spectral information in few discrete bands 
from visible to infrared range and their band-
widths are wider than 100 nm. Multispectral sens-
ing system employs a small number of parallel 
sensor arrays to detect radiation of broad wave-
length bands. In such a case, identification, detec-
tion, and discrimination capability decreases due 
to low spectral resolution. On the other hand, the 
hyperspectral imaging system collects data in nar-
row and more number of spectral bands as com-
pared to the multispectral sensor. It consists of 
hundreds of spectral bands with a few nanometer 
spectral resolution, generates continuous spectral 
signature as compared to conventional spectral 
imaging (multispectral). The information con-
tent of hyperspectral images is much more than 
multispectral images. It has a great potential to 
detect differences among land and water and has 
a capability to discriminate individual absorption 
bands in mineral deposits and vegetation types. 
Examples of multispectral and hyperspectral 
signatures have been shown in Fig.  1. As shown 
in Fig.  1a and c, distinct materials may be dis-
criminated easily by multispectral signature and 

very easily by hyperspectral signature. However, 
in case of photosynthetic vegetation, i.e., spruce 
needle, lawn grass, maple leaf, and Russian olive 
multispectral data appear nearly identical, but it 
may be possible to separate using hyperspectral 
data due to minute spectral variations and num-
ber of absorption bands. Hyperspectral signature 
provides information about absorption depth 
and bands of the material. Absorptance bands 
may be used for identification, characterization, 
and abundance estimation purpose.

Initially, hyperspectral imaging is used for 
remote sensing purpose. Nowadays, it has been 
gaining popularity for industrial applications as 
well. In general, pushbroom technique is used for 
airborne, spaceborne and other platforms based 
on remote sensing to acquire hyperspectral data 
for Earth observation applications. Normally, it 
consists of fore-optics, slit, collimating optics, 
dispersive element (transmission grating), focus-
sing optics, and detector array17 as shown in 
Fig.  2. Fore-optics image the light onto the slit 
from the scene for data formation. After collima-
tion, light passes from the grating and disperses 
into different wavelengths, and dispersed light is 
focussed onto the detector array. Slit dimension 
defines the pixel intervals to project light of dif-
ferent wavelengths along the column of a detector 

Figure 1:  Example of multispectral and hyperspectral signatures16.
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array. In such a way, it forms spectral information 
in one direction and spatial information in other 
direction. Prism, grating and linear variable filter 
(LVF) may be used to achieve high spectral reso-
lution in hyperspectral imaging.

3 � Hyperspectral Imaging System
Hyperspectral imaging is one of the popular 
Geo-imaging techniques. Hyperspectral imag-
ing system collects a number of images with 
narrow wavelength range, known as a spec-
tral band. Combination of these spectral bands 
forms 3-Dimensional data known as hypercube 

(known as a spectral cube, data cube, data vol-
ume and data cube). Hyperspectral data include 
two spatial dimensions and one spectral dimen-
sion to form the data cube. Hyperspectral imag-
ing system is an advanced imaging system which 
includes all the basic components of an imag-
ing system. Normally, they are lens assembly, 
an image sensor (Focal Plane Array), and image 
processor. However, a Focal plane array is a two-
dimensional form. Therefore, in order to cap-
ture all three dimensions of the spectral cube, 
conventionally, requires either spatially or spec-
trally scanning mechanism. Nowadays, snapshot 

Figure 2:  Schematic representation of the operation of hyperspectral imaging system.

Figure 3:  Conceptual representation of hyperspectral imaging for Earth observation.
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spectral imaging system is also available which 
captures entire dataset during single detector 
integration period. However, this technique is not 
popular for Earth-observing applications.

For spatial scanning, either instrument or 
object under observation moves w.r.t other.

While spectral scanning is not preferable for 
EO applications, normally data are collected 
using pushbroom or whiskbroom approach for 
EO applications. In a pushbroom approach, 
data collects along track uses the line of detec-
tors  arranged perpendicular to the moving direc-
tion. In the push broom approach, all the pixels 
in a line are collected simultaneously. Whereas, in 
whiskbroom approach, data is collected across the 
track using a mirror which moves back and forth 
in order to collect the one-pixel data at a time.

Conceptual representation of hyperspectral 
imaging is shown in Fig.  3. In a given Figure, 
imaging spectrometer is attached to the flying 
platform and collecting data either along track or 
across track manner, where X and Y represent the 
spatial dimensions, while � represents the spec-
tral dimension of a hyperspectral data  cube. In 
essence, hyperspectral data can be described as I 
(X, Y, �) which can be viewed either as a spectral 
fingerprint I (�) at each pixel (X, Y) or as a spa-
tial distribution I(X,  Y) at each wavelength (�). 
Spectral signature is generated at a specific pixel 
location by sampling the pixel values of all the 
spectral bands as shown in Fig. 3.

The major components of the hyperspectral 
imaging system are fore-optics, focussing optics, a 
spectral separation unit, illumination unit, trans-
lation stage, and detector system. Spaceborne and 
airborne platforms do not require illumination 
and translation units. The spectral separation 
unit may be grating, prism, an interferometer, 
electronic tunable filter (ETF), and linear vari-
able filter (LVF)18. Each Spectral separation unit/
device has its own advantages and disadvantages 
in terms of spectral resolution and range, com-
pactness, throughput, etc.

In order to design and develop a system, simu-
lation plays an important role in predicting and 
forecasting the performance of hyperspectral 
system prior to the development stage. Simula-
tion provides an end to end simulation of the 
system to analyze and optimise the performance 
prior to development state. As a result, it is help-
ful to develop, validate, and implement the sys-
tem. Sensor simulation also includes a spatial, 
spectral, and radiometric response of the system 
that are interpreted as key factors of image/data/
spectral quality metrics as per the case19. SEN-
SOR (Software Environment for the Simulation 

of Optical Remote sensing systems)20 is an end to 
end optical remote sensing simulation system that 
has been developed jointly by German Aerospace 
Centre (DLR) and University of Zurich to simu-
late imaging systems on airborne and spaceborne 
platforms. This simulator is divided into three 
modules: hardware, observed scene, and atmos-
phere. SENSOR simulator is closely related to an 
airborne hyperspectral sensor; Airborne Prism 
Experiment (APEX) by European Space Agency 
(ESA). Environmental Mapping and Analysis Pro-
gram (EnMAP) simulator21 has been developed 
to generate the hyperspectral and multispectral 
image by setting instrument and scene param-
eters prior to EnMAP mission to analyze the per-
formance of the mission. EnMAP22 is a German 
hyperspectral imager which works in the range of 
420–2450 nm with a varying spectral sampling. 
CAMEO23, PICASSO24, 25, SG_SIM26 simulators 
have also been developed for end to end imaging 
chain analysis of the remote sensing system.

4 � Platforms
Sensor systems should be placed over suitable 
observing platforms and lifted to pre-defined 
height. Platforms may be movable (airborne, spa-
ceborne, aerial system or underwater vehicle) and 
stationary (field observation from the tripod) 
depend upon the requirements and constraints for 
observation. Generally, the spatial resolution of 
the imaging system starts decreasing as the height 
of the platform  increases; however, the area of 
coverage also increases. Thus, a trade-off has to 
be carried out in between resolution and synoptic 
view to choose the proper platform height. Fur-
thermore, stability and ability of the platform to 
support the sensor system need to be considered. 
Selection of the platform depends upon the appli-
cation requirement and it may be satellite, aircraft, 
unmanned aerial system, underwater water vehi-
cle or ground-based system. In this section we dis-
cuss the above mentioned moving platforms.

4.1 � Airborne Platform
Aerial platform as the name suggests is that plat-
form which remains in the air. It may be aircraft, 
balloon or helicopters which have been employed 
for aerial photography. Airborne remote sens-
ing has been in practice since the past 30 years. 
They are generally used for local and/or limited 
region of interest. It may be done from low alti-
tudes (1 km) to a few tens of kilometres depend-
ing on the capability of the aircraft and the 
integrated sensors. Initially, an analog camera has 
to be used with the airborne platform for aerial 
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photography. Recent technological advancement 
enforces the airborne platform to be more 
sophisticated like digital camera along with GPS 
and image motion sensor to enhance the aerial 
photography and simultaneously provide extra 
information along with the image data. Currently, 
there are aircraft fitted with multiple numbers 
of sensors, capable of observing the whole range 
of electromagnetic spectrum in order to obtain 
the remote sensing data. Airborne hyperspectral 

sensor, i.e., HyMAP data are shown in Fig.  4. It 
indicates mineral maps of jarosite, kaolinite, illite, 
alunite, and chlorite27 in Rodalquilar.

The Main limitations of an airborne platform 
are the high cost for global coverage and regional 
coverage on a repetitive basis. Some of the major 
airborne hyperspectral sensors along with speci-
fications of different countries have been given in 
Table 1.

Figure 4:  Mineral mapping of jarosite, kaolinite, illite, alunite, and chlorite27.

Table 1:  Some of the major airborne hyperspectral sensors along with specifications.

Instrument
Spectral range/
bands Manufacturer/producer

Launch 
date

AVIRIS-classic (Airborne visible infrared 
imaging spectrometer)28, 29

400–2500 nm/224 JPL, NASA 1986

Airborne imaging spectrometer (AIMS)30 454–888 nm/143 SAC-ISRO 1996

Airborne hyperspectral imager (AHySI)30 465–995 nm/512 SAC-ISRO 2007

AVIRIS-NG (Airborne visible infrared imag-
ing spectrometer—Next Generation)31

380–2510 nm/ JPL, NASA 2012

HYDICE (Hyperspectral digital imagery col-
lection experiment)32–34

400–2500 nm/210 U.S. Naval Research Laboratory 1995

CASI (Compact airborne spectrographic 
imager)35

430–870 nm/288 ITRES research 1988

HyMap (Hyperspectral Mapper)36, 37 450–2500 nm/100–
200

Integrated Spectronics, Pty. Ltd.

DAIS 7915 (Digital airborne imaging spec-
trometer)38

400–12300 nm/79 Geophysical Environmental 
Research

1996

ASAS (Advanced solid-state array spectro-
radiometer )39

450–880 nm/30 NASA Johnson Space Centre

AAHIS (Advanced airborne hyperspectral 
imaging system)40

432–832 nm/288 SETS Technology Inc.



434

Hyperspectral Imaging for Earth Observation

1 3 J. Indian Inst. Sci.| VOL 98:4 | 429–443 December 2018 | journal.iisc.ernet.in

4.2 � Spaceborne Platform
In spaceborne platforms, sensors are mounted 
on-board in the satellites and give a synoptic 
view of large areas. Spaceborne platforms (satel-
lites) are placed in any of three orbits. Orbit may 
be LEO (Low Earth Orbit), MEO (Medium Earth 
Orbit), and GEO (Geostationary Earth Orbit). 
Each orbit has been used for specific application 
and has its own sensor designing as well as devel-
opment criteria. In the spaceborne platform, the 

imaging system design depends upon the type of 
orbit, its altitude w.r.t. earth, and instantaneous 
field of view (IFOV). The advantages of space-
borne platforms are wide-field of view (WFOV), 
coverage of large areas, and repetitive observa-
tions of the same area. On the contrary, it has 
some disadvantages like low spatial resolution 
(coarse mapping), performance degradation in 
the cloudy atmosphere, and onboard mainte-
nance is not possible. Table 2 represents some of 

Table 2:  Some of the major spaceborne hyperspectral sensor missions along with specifications.

Instrument Mission Spectral range/bands Launch date
Manufacturer/pro-
ducer

Hyperion41 EO-1 (Earth Observ-
ing-1)

400–2500 nm/242 November, 2000 Northrop Grumman 
Space Technology, 
USA

CHRIS (Compact High 
Resolution Imaging 
Spectrometer)42, 43

PROBA (PRoject for 
OnBoard Autonomy)

410–1050 nm/63 October, 2001 UK/ESA

HySI (Hyperspectral 
Imager)30, 44, 45

IMS-1(Indian Micro 
Satellite-1)

400–950 nm/64 April, 2008 ISRO, India

FTHSI (Fourier Trans-
form Hyperspectral 
Imager)46

MightySat-II 475–1050 nm/146 July, 2000 Air Force Research 
Laboratory, USA

ARIES-1 (Australian 
Resource Information 
and Environmental 
Satellite)47

ARIES 400–1100nm and 
2000–2500nm/64

2001 ARIES consortium of 
AUSPACE Limited

TG-1 HSI (TianGong-1 
Hyperspectral 
Imager)48, 49

TianGong-1 400–1000 nm(10 nm) 
and 1000–2500 nm 
(23 nm) / 64(VNIR) 
and 64 (SWIR)

China Manned Space 
Engineering, China

HJ-1A HSI50 HJ-1 mission (Huan 
Jing-1)

450–950 nm/110–128 September, 2008 CAST, China

HICO (Hyperspectral 
Imager for the 
Coastal Ocean)51, 52

353–1081 nm/128 September, 2009 Naval Research Labora-
tory (NRL), USA

Figure 5:  Relative importance of UAS hyperspectral remote sensing over Earth surface.
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the major spaceborne hyperspectral sensors of 
different organizations.

4.3 � Unmanned Aerial System
UAS includes all vehicles with a fly in air capacity 
without an onboard person, able to control the 
flying vehicle. Hyperspectral imaging from spa-
ceborne and airborne platforms is facing major 
challenges like the  demand for high-resolution 
data, instant availability of data, and regionalized 
data. However, ground sensing platform faces dif-
ficulties in transportation and complexities in the 
generation of real-time ground maps besides the 
fewer possibilities of simultaneously collecting 
data from several plots. This suggests an alterna-
tive solution to address these issues, one of which 
is to use unmanned aerial system (UAS). Typi-
cally, UAS provides hyperspectral data with high 
spatial and temporal resolution which makes it 
vital for high-resolution EO applications. Con-
ceptually, UAS bridges the gap between the air-
borne and ground-based platforms as shown in 
Fig. 5.

Cost and unavailability of high-resolution 
satellite imagery often limit the applications of 
hyperspectral imaging to EO. Consequently, UAS 
is cost-effective and better replacement of satel-
lite and airborne for high-resolution imagery. 
In addition, UAS are the instantly accessible 
tool. Nowadays, UAS has been available in wide 
range from rotocopters to fixed wings53. UAS 
has been divided mainly into four categories, 
i.e., parachutes, blimps, rotocopters, and fixed 
wing systems. Each category has its own condi-
tions and limitations. Under no-wind condi-
tions, parachutes can be flown but not in windy 

conditions. Moreover, they are relatively slow and 
take less flight time. Generally, blimps are used 
for advertising and can be used for aerial pho-
tography. However, they move slowly from one 
place to another due to the large surface area. 
Most widely used UAS are rotocopters and fixed 
wings. Rotocopters have a number of advantages 
like flying horizontally and vertically, hovering 
at a given location. However, limitations are low 
speed and flight time as compared to fixed wings. 
On the contrary, fixed wings have high speed and 
flight time. However, they do not have hovering 
capability.

UAS has been capable to take images at high 
resolution for monitoring and measuring the 
environmental conditions on a regional basis. 
Advancement of technology led to the avail-
ability of lightweight hyperspectral sensors com-
mercially. This makes possible to integrate the 
lightweight hyperspectral sensor with UAS. It is 
one of the cost-effective and preferable solutions 
in place of spaceborne and airborne platforms to 
collect high-resolution data on requirement basis. 
The number of sensors can be integrated with the 
UAS platforms depending on payload lift capabil-
ities, type of data requirement including hyper-
spectral sensor54, 55, LiDAR (Light Detection and 
Ranging) sensor56, multispectral sensor57, 58, GPS, 
thermal camera59, 60, digital camera61, etc. This 
type of system has been used extensively in geo-
resources applications and precision agriculture53, 

62–64.
The successful implementation of UAS for EO 

applications depends on two main factors62. The 
first is UAS characteristics such as safety, stability, 
control, endurance, positioning, autonomy, and 

Table 3:  Some of the major UAS for Earth observation applications.

Specifications are taken from the manufacturer’s websites

Type Manufacturer/model Weight/payload (kg) Altitude (m)
Flying speed 
(km/h)

Fixed-wing Precisionhawk/LANCASTER 5 2.4 2500 (max.) 79

Trimble/UX5 2.5 75–750 80

AeroVironment/Puma AE RQ-20B 6.3 150 47–83

helicopter High eye/HEF 30 < 25/5 1800 130

Aeroscout GmbH/Scout B1-100 50/18 5000

hexacopter Aibotix/Aibot X6 3.4 3000 40

Vespadrones/XYRIS 6 4.2/2.2 80

dji/MATRICE 600 PRO 10/5.5 5000 65

Octocopter Ascending/Intel Falcon 8+ 1.2 4000

Dodecarotor Altigator/HYDRA-12 /12

Quadrocopter microdrones/MD4-3000 6/3 4000 72
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sensor mount. The second is sensor characteris-
tics such as resolution, weight, and field of view. 
There is a need to take care above aspects in order 
to utilize the full potential for EO applications. 
Irrespective of this, an improvement over hyper-
spectral data processing algorithms is required 
for automatic feature extraction, geo-referenc-
ing, blur reduction, and distortion correction. 
UAS provides an opportunity for high through-
put for EO applications. We expect the usage of 
UAS-based technology will grow exponentially 
in upcoming few years. Tables 3 and 4 represent 
some of the majorly available UAS platforms and 
cameras for Earth observation applications.

4.4 � Ground‑Based Platform
For ground-based hyperspectral sensing, a 
mobile or static platform has also been used 
for data collection. Data are collected at ground 
level by fixing a hyperspectral imaging system 
on to the moving or static platform. Portable 
handheld spectro-radiometer provides the spec-
tral information of the material under test used 

for calibration and analysis process of collected 
hyperspectral data65–67. Such devices have been 
frequently used in mining68 and agricultural69 
applications to determine the spectral behavior 
of the material under study. The static platform 
offers better observation capabilities and tem-
poral resolution It has been using in numerous 
applications like toxic industrial chemicals and 
gases detection70, volcanology, natural gas, com-
bustion analysis, and camouflage71. Generally, 
spectro-radiometer is not used with a mobile 
vehicle because of the fact that the data captured 
by it is localized and limited analysis. Nowadays, 
a mobile hyperspectral vehicle for ground sens-
ing has been gaining popularity and usability72, 

73. A mobile vehicle is composed of imaging, syn-
chronization, and navigation sensors in which it 
includes a hyperspectral camera, digital camera, 
navigation sensors, and GPS for geo-referencing, 
is being studied and tested for field applications 
to improve the data density in spatial as well as 
temporal scales. Table  4 represents some of the 

Table 4:  Some of the major hyperspectral cameras for UAS and ground sensing platform.

Specifications are taken from the manufacturer’s websites

Manufacturer Model Spectral range/bands Weight (kg) Technology

Resonon Pika L 400–1000 nm /281 0.6 Pushbroom

Pika NIR 900–1700 nm /164 2.7 Pushbroom

Pika NUV 350–800 nm/196 2.1

Pika XC2 400–1000 nm/447 2.2

Surface optics SOC710-GX 400–1000 nm /120 1.25

Bayspec OCI-UAV-1000 600–1000 nm /100 0.180 Pushbroom

HySpex HySpex Mjolnir-1024 400–1000 nm /200 4.0

Headwall Nano-Hyperspec 400–1000 nm /270 0.52

Specim AISAKESTREL 10 400–1000 nm / 2.1 Pushbroom

AISAKESTREL 16 600–1640 nm / 2.3 Pushbroom

OWL 8000-12000 nm /84 3.5 Pushbroom

sCMOS-50-V8E 400–1000 nm / 2.0 Pushbroom

Ximea MQ022HG-IM-LS100-NIR 630–970 nm/100+ 0.032 Linescan

MQ022HG-IM-LS150-VISNIR 470–900 nm/150+ 0.032 Linescan

MQ022HG-IM-SM4X4-VIS 470–630 nm/16 0.032 Snapshot 
Mosaic

MQ022HG-IM-SM5X5-NIR 600–975 nm/25 0.032 Snapshot 
Mosaic

Itres micro CASI 1920 400–1000 nm/288 < 1.5 Pushbroom

micro SASI 384 1000–2500 nm/200 2.0 Pushbroom

Corning microHSI 410 SHARK 400–1000 nm/ 0.68

Cubert GmbH S 185 FireflEYE SE 450–950 nm/125 0.49 Snapshot

Rikola VIS-VNIR Snapshot 400–1000 nm/380 0.720 Snapshot
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major hyperspectral cameras of public and pri-
vate organizations.

4.5 � Underwater Vehicle
The Knowledge of the underwater environment 
is limited as compared to the over surface envi-
ronment of the Earth. Over the past few decades, 
remote sensing from satellites and aircrafts has 
shown significant improvement in a number of 
applications such as agriculture74, 75, geology27, 

76, forestry77, 78, and archeology79, 80. However, 
many of the over surface techniques do not work 
in the underwater environment. The underwater 
environment is complex and dynamic, executes 
large unevenness in bio-geo-chemical composi-
tion over space and time. There is a requirement 
to collect seafloor (underwater) data in order 
to perform continuous monitoring, manage-
ment, and mapping of the underwater environ-
ment. Conventional methods like in  situ diver 
surveys, video towed from boat, etc. are used for 
the underwater survey. However, they are lim-
ited in order to provide high-quality maps of the 

Table 5:  Some of the major underwater vehicles.

Manufac-
turer Model

Operating 
depth

Weight 
(Kg)

Hydroid Remus 100 100 m

Remus 600 600/500m

Remus 
6000

6000 m

Kongsberg Seaglider 50 to 1000 m

Hugin 3000/4500/6000 
m

Munin 600/1500 m

Teledyne 
Marine

Gavia 
Scientific 
AUV

500/1000 m

Gavia 
Offshore 
Surveyor

500/1000 m

Gavia 
Defence 
AUV

500/1000 m

Bluefin Bluefin-21 4500 m

Bluefin 
Sand-
Shark

200 m

HAUV 30/60 m

Ageotec-
Light-
house

ROV SIRIO 300 m 40

ROV LYRA 300 m 80

ROV PER-
SEO

300 m 80

ROV PER-
SEO GTV

1500 m 160

ROV 
PEGASO

1500 m 400

Fugro ECHO SUR-
VEYOR II

3000 m 1450

ECHO SUR-
VEYOR IV

3000 m 1860

ECHO SUR-
VEYOR 
VII

4500 m 1700

seaeye 
falcon

300 m 60

Seaeye 
TIGER

600/1000 msw 150

seaeye lynx 1500 msw 200

SEAEYE 
COUGAR-
XT

2000 m 409

SEAEYE 
PANTHER 
PLUS

1000 msw 500

SEAEYE 
PANTHER 
XT

1500 msw 500

Specifications are taken from the manufacturer’s websites

Table 5:  continued

Manufac-
turer Model

Operating 
depth

Weight 
(Kg)

Forum 
Energy

XLX-C 3000 (4000) 
msw

3600–4100 
kg

XLX 200HP 3000 (4000) m 5500 
(5662) 
kg

Mojave 300 m 85

Mohican 2000 m 340

Mohawk 2000 m 165

Comanche 3000 m 1130

Super 
Mohawk

3000 m 395

Subsea 
Tech

Observer 
4.0

150 m 6.4

Guardian 
3.0

150 m 4.5

AC-CESS AC-ROV 
100

100 msw 3

AC-ROV 
3000

100 m 3

Blue 
Robotics

BlueROV2 100 m 10–11

Dwtek Investigator 
90

500 m 132

Mariner 
Under-
water

IPPODA-
MUS

750 msw 75
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underwater features. In such a case, an underwa-
ter vehicle can be used to collect data for moni-
toring and mapping of the seafloor bed. During 
the last decade, a semi-autonomous/autonomous 
vehicle has been advancing from experimental 
setup to commercial system for the underwater 
environment. Underwater vehicle has been used 
for marine coastal monitoring81, mapping, and 
management to determine biological abundance, 
diversity and behavior, marine traffic, and con-
struction work82 to make sustainable decisions 
for the environment.

With an underwater vehicle, hyperspectral 
imaging is used to obtain qualitative and quanti-
tative information of the material of interest. This 
technique provides an optical fingerprint of the 
minerals, seagrass, coral reef from visible to Infra-
Red (IR) range to identify and map the target of 
interest. Passive hyperspectral imaging is possi-
ble in optically shallow areas. Such technique is 

used to map seagrass83, near-shore habitats84 and 
kelp85. Most of the sea areas are optically deep 
and cannot be imaged using passive hyperspec-
tral imaging technique. In such scenario, passive 
imaging technique does not work for optically 
deep areas, requires a light source for illumina-
tion. AN artificial light source has been used to 
utilize the full potential of underwater hyperspec-
tral imaging. Hyperspectral imager positioned 
into the Remotely Operated Vehicles (ROV)86 and 
Autonomous Underwater Vehicles (AUV) to col-
lect the seafloor reflectance data. In order to over-
come the passive imaging effects, illumination 
unit is used to measure the benthic reflectance at 
high spectral and spatial resolution. Light source 
should be designed specifically to illuminate the 
object of interest evenly.

Hyperspectral imaging is one of the poten-
tial techniques for mapping and monitoring of 
the underwater environment. Limited literature 

Figure 6:  a Radiance data in pseudo-RGB (R: 645 nm, G: 571 nm, B: 473 nm), b geocorrected pseudo-
reflectance data in pseud-RGB, and c support vector machine classification image based on the data 
given in (b) section. Dumke et al.(2018)89.

Table 6:  Some of the major underwater hyperspectral cameras.

Specifications are taken from the manufacturer’s websites

Model Manufacturer Spectral range/bands Technology

Underwater hyperspectral imager (UHI) Ecotone Pushbroom

WaterCam SphereOptics 450–950 nm/138 Snapshot

S 685-FireflEYE UW Cubert GmbH 450–950 nm/125 Non-scanning
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is available for the hyperspectral sensing under-
water vehicle as compared with other platforms 
for surface observation. ROV and AUV may be 
used for underwater surface inspection. There 
are numbers of underwater vehicles commer-
cially available. Each vehicle has its own operat-
ing depth range, endurance, speed, the payload 
carrying capability, sensor integration inter-
faces, battery working time and so on. Some of 
the available underwater vehicles are integrated 
with sensors and others provide options to inter-
face sensors. Therefore, Usability, application 
domains, type of data requirement, etc. may vary 
in each case. Some of the underwater vehicles list 
which may be used with a hyperspectral sensor 
and/or with different sensors (LiDAR, SONAR, 
etc.) for underwater monitoring are given in 
Table 5.

Pushbroom sensor design87 may be used to 
conduct high-quality underwater hyperspectral 
imaging, where the scan line is perpendicular to 
the direction of imaging. Underwater hyperspec-
tral imaging is used for mapping, monitoring, 
and identification of deepwater species, habitats, 
marine mining applications, and undersea pipe-
line inspection. Furthermore, underwater hyper-
spectral data are used as an input to improve 
the autonomy of underwater vehicle for plan-
ning and navigation. Johnsen et  al.86 positioned 
underwater hyperspectral imaging into ROVs for 
automated mapping, monitoring, and identifica-
tion of underwater bio-geo-chemical materials. 
Similarly, Odegard et  al.88 surveyed underwa-
ter archaeological sites by unmanned platforms 
integrated with acoustic sensors and optical 
sensors. The purpose of this study was to dem-
onstrate the advanced underwater technology 
and marine robotics for surveying. In89, authors 
presented the first hyperspectral data from the 
deep sea floor and checked the potential of the 
underwater hyperspectral imager (UHI) for 
seafloor exploration. In this, authors compared 
two supervised classification methods, i.e., spec-
tral angle mapper and support vector machine 
for detection and mapping of minerals in the 
deep sea. Data are collected in approximately 
4200 m water depth by pushbroom UHI (378-
805 nm) developed by Ecotone. The KIEL6000 
ROV(GEOMAR) is used as a UHI platform for 
data collection. Herein, underwater hyperspec-
tral Data processing consist of three steps. They 
are radiance processing, (pseudo-)reflectance 
processing, and geocorrection via photomosaic-
based navigation data. Underwater hyperspectral 
data have been shown in Fig.  6a, b and c. Cali-
bration of raw data to radiance by radiometric 

calibration has been shown in Fig. 6(A). Geocor-
rected pseudo-reflectance data have been shown 
in Fig.  6(B) and classified image by support 
vector machine has been shown in Fig.  6(C). 
Authors concluded that the underwater hyper-
spectral imaging has a potential to survey from 
shallow coastal water to deep sea for mapping 
and classification.

Other sensors like LiDAR90, side scan sonar, 
synthetic aperture sonar, and stereo cameras88, 

91 have also been used in an unmanned under-
water platform for surveying and inspection 
application. Some of the available underwater 
hyperspectral cameras have been given in Table 6.

5 � Conclusion
Hyperspectral imaging has been gaining popular-
ity from space imaging to machine vision appli-
cations. We need to know the sensing platforms 
and instruments in order to acquire hyperspectral 
data effectively for different applications. In this 
article, we have briefly discussed different sensing 
movable platforms for EO applications. Addition-
ally, some of the major hyperspectral instruments 
for different sensing platforms developed by 
several public and private organizations are pre-
sented. As a conclusion, It is anticipated more 
instruments with better specifications for differ-
ent sensing platforms will continue to expand for 
EO applications.
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