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Discrete Choice Models with Alternate Kernel Error 
Distributions

1 Introduction
Discrete choice models served as the modeling 
paradigm for analyzing scenarios where decision-
makers choose one unique alternative from a set 
of competing options. While researchers explored 
several alternate decision rules, the random utility 
maximization (RUM) decision rule that assumes 
a rational decision-maker choosing the option 
with highest utility has dominated the choice 
modeling literature given its ability to approxi-
mate a wide gamut of choice rules26. Assuming 
additive separability, the utility Ud,i associated 
with alternative to decision-maker d is written as: 
Ud,i = Vd,i + εd,i , where Vd,i is the deterministic/
observed/explained utility component and εd,i is 
the stochastic/unobserved/un-explained utility 
component. Different assumptions about the 
error component εd,i lead to different choice 
models.

Among these choice models, the multinomial 
logit (MNL) has seen wide applicability given its 
closed-form probability expression31. In the MNL 
model, the error components εd,i are assumed to 
be independent and identically standard Gumbel 

Random utility maximiza-
tion (RUM) Theory: Stochas-
tic extension of utility theory 
in which the decision-maker’s 
utility function for each 
alternative is assumed to be 
composed of two parts—fac-
tors observed and unobserved 
by the analyst.

Discrete choices: Choice sce-
narios in which the decision-
maker is faced with picking 
one unique alternative from 
the set of mutually exclusive 
and collectively exhaustive set 
of alternatives.

Utility: An alternative-
specific representation of the 
decision-maker’s net benefit 
from choosing an alternative.

Generalized extreme value 
(GEV) models: A group of 
choice models which relax 
the i.i.d. assumption of the 
MNL model; specifically, the 
kernel errors are assumed to 
multivariate type-I extreme 
value random variables.

Multinomial logit (MNL) 
model: The simplest and 
earliest discrete choice models 
that assumed that kernel 
errors are independent and 
identically distributed (i.i.d.) 
Gumbel or type-I extreme 
value random variables across 
choice alternatives.
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Abstract | The multinomial logit (MNL) and probit (MNP) models domi-
nated the literature on consumer behavior analysis, particularly in 
the transportation planning context where the focus is on future travel 
demand prediction as an aggregated outcome of individual traveler 
choices. While Gumbel kernel errors in the MNL model are unbounded 
and positively skewed, normal kernel errors in the MNP model are sym-
metric and unbounded. However, choice models with alternative kernel 
errors (beyond Gumbel and normal distributions) have piqued the inter-
est of choice modelers for behavioral and prediction accuracy reasons. 
In addition, researchers found evidence in support of these alternate ker-
nel errors in a wide variety of empirical contexts. This paper compiles a 
synthesis of the past literature that developed choices models with flex-
ible kernel errors, including both parametric and semi-parametric meth-
ods and concludes with possible avenues for further research.
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random variables across choice alternatives. How-
ever, one of the main limitations of the MNL 
model is its independence from irrelevant alter-
natives (IIA) property, which implies that the rel-
ative odds of choosing an alternative A over 
another alternative B does not depend on other 
alternatives (excluding A and B). Equivalently, the 
cross elasticity defined as the percentage change 
in probability of alternative B for unit percentage 
change in attributes of alternative A does not 
depend on B, leading to proportional substitution 
effects in the MNL model. Later, generalized vari-
ants of the MNL model, including (a) the gener-
alized extreme value (GEV) models with more 
flexible substitution patterns of choice probabili-
ties across alternatives27, 37, 40, 42, (b) the heterosce-
dastic logit model to allow different variances for 
utility functions across choice alternatives4, and 
(c) the mixed logit (MMNL) model to handle 
random taste heterogeneity across decision mak-
ers and correlation of choice outcomes in panel 
data32, were developed. In all these variants of the 
MNL model, the unobserved utility components 
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εd,i are assumed to have a multivariate type-I 
extreme value or Gumbel distribution.

Alternatively, the multinomial probit (MNP) 
model with normally distributed utility func-
tions is a one-stop solution to all the three limi-
tations of the MNL model, including generic 
covariance structure for stochastic utility compo-
nents, random taste heterogeneity, and correla-
tion across decision-makers in panel data15, 24, 38. 
Unlike in the GEV models, the likelihood func-
tion in the MNP model does not have a closed 
form and entails evaluation of a multivariate 
integral of dimensions in the order of the num-
ber of choice alternatives. However, recent 
advances in the computational power coupled 
with the development of alternative inference 
methods, including both simulation and analyti-
cal approximations, have enabled faster estima-
tion of MNP models5, 21, 29, 30, 36. The normal 
distributional assumption of the choice utilities 
in the MNP model implies a bell-shaped utility 
density curve that is perfectly symmetric. On the 
other hand, the Gumbel distribution in the MNL 
model is positively skewed with slightly fatter 
tails compared to a normal distribution. This 
property of Gumbel distribution is preferred in 
some choice contexts, given that it can allow 
more extreme behavior compared to a normal 
distribution38. However, the difference between 
the two distributions is empirically indistin-
guishable in many cases given their close sem-
blance. In the MNP model, the deterministic 
utility component Vd,i can be interpreted as the 
average utility over all the decision-makers (with 
same characteristics), out of which one decision-
maker is chosen at random whereas the stochas-
tic utility component εd,i is the deviation from 
this average utility24. The error component εd,i is 
comprised of several factors including omitted 
attributes describing the alternative and the deci-
sion-maker, imperfect information, and errors in 
the utility function, among others. So, the nor-
mal distributional assumption for the error term 
seems natural given that the average of several 
independent random variables converges to a 
normal distribution according to the central 
limit theorem. However, this is not always true 
particularly in cases when the random variables 
being aggregated are non-identical, correlated, 
and finite. In addition, wrong assumptions about 
the stochastic error part can lead to inconsistent 
parameter estimates resulting in inaccurate fore-
casts and policy implications43. Quite under-
standably, researchers explored alternate 
distributions for kernel errors in choice models.

Multinomial probit (MNP) 
model: A discrete choice 
model that assumes the kernel 
errors to be multivariate 
normal random variables.

Kernel Errors: The part of the 
utility function that is com-
posed of factors unknown to 
the analyst which is typically 
assumed to a random variable 
with pre-specified parametric 
distribution.

2  Review Scope and Focus
There is considerable literature that developed 
choice models with non-normally distributed 
random parameters. For instance, researchers 
used non-normal distributions including log-
normal, triangular, and uniform distributions 
for random parameters within the mixed logit 
framework19. Along similar lines, Bhat and his 
colleagues developed MNP model with skew-
normal random parameters estimated using an 
alternate inference method that combines ana-
lytical approximation of multivariate normal 
cumulative distribution function and composite 
marginal likelihood6, 9, 10. More recently, MNP 
model with truncated normal random param-
eters was developed33. These studies are mainly 
motivated by the need to constrain the domain 
of cost/time parameters to reflect strictly negative 
(or positive) behavioral sensitivities. While these 
studies introduce skewness in the effective error 
term (i.e., combination of random parameters 
and kernel error), they retain either the Gumbel 
or normal distributional assumption for the ker-
nel errors. In this paper, we focus exclusively on 
past research that explored alternate distributions 
for the kernel errors (and not taste sensitivity 
parameters).

Researchers developed ordered response mod-
els for modeling categorical data in which the 
categories are intrinsically ordered (e.g., attitudes 
measured on Likert scale, or intensity of events). 
These ordinal responses are interpreted as out-
comes of a data generation process in which a 
single latent propensity y∗d is mapped into differ-
ent ordinal categories by latent threshold param-
eters ψd,j ( j = 1, 2, . . . , J − 1 ) that partition the 
propensity space into as many intervals as the 
number of ordinal categories J  . Most earlier 
applications of OR models assume (1) additive 
separability of latent propensity into two com-
ponents—Vd (observed) and εd (unobserved), 
and (2) fixed thresholds that do not vary across 
observations, i.e. ψd,j = cj . Unlike in unordered 
response models, exploring alternate distribu-
tions for εd in propensity is much easier given that 
the implied choice probabilities can be written as 
the difference of the univariate cumulative distri-
bution function of εd evaluated at two different 
points. Among different parametric distributions, 
the normal (leading to ordered probit model) 
and logistic (ordered logit model) distribu-
tions are frequently used in the literature. Other 
parametric distributions including complemen-
tary log–log and Gompertz distributions were 
also used but do not have any clear underlying 
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motivation23. Recently, ordered response model 
with skew-normal error term was developed to 
explore skewness and asymmetry in unobserved 
factors affecting bicycling frequency7. Also, gen-
eralized ordered response (GOR) models with 
both systematic and stochastic heterogeneity in 
thresholds (as opposed to treating them as fixed) 
were developed using random parameters specifi-
cation within the thresholds18, 22. More recently, a 
new class of ordered response models with intrin-
sically stochastic thresholds that are truncated 
realizations of Gumbel and normal random vari-
ables were developed35. Ordinal data can also be 
modeled within the unordered response frame-
work but with flexible kernel error dependency 
structure. For instance, ordered GEV (OGEV) 
model which retains the Gumbel marginal distri-
bution for kernel error terms but allows correla-
tion between two ordinal alternatives A and B to 
be a function of the gap or difference between the 
alternatives, i.e. |A − B| was developed37. In this 
paper, we limit the literature synthesis to unor-
dered choice models with alternate kernel error 
distributions beyond the Gumbel and normal 
distributions used in the GEV and MNP models, 
respectively.

3  Relevant Studies
Table 1 presents key details of different studies in 
the literature that explored alternate kernel error 
distributions. We now proceed to discuss each of 
these studies in greater detail. As mentioned ear-
lier, the restrictive IIA property of the MNL model 
has led researchers to explore alternate kernel 
error distributions that allow flexible substitu-
tion patterns but have closed-form probability 
expression. For instance, Daganzo introduced a 
choice model with negative exponential distri-
bution (NED) for the kernel errors but did not 
explore its properties in complete detail15. More 
recently, this NED model re-surfaced again as the 
exponomial choice (EC) model in which the util-
ity function is bounded from above and negatively 
skewed1, 15. In the EC model, the stochastic part of 
the utility function εd,i is assumed to have expo-
nential distribution as follows: Ud,i = Vd,i − εd,i . 
It is important to note that the error component 
in the EC model appears with a negative sign 
making the effective error term −εd,i that has 
additive inverse of exponential distribution. In 
the EC model, the deterministic part of the util-
ity function Vd,i can be interpreted as maximum 
attractiveness or ideal utility associated with an 
alternative and the error component captures 
heterogeneity across decision-makers. In choice 

contexts where decision-makers are more knowl-
edgeable about the choice market (i.e. competing 
alternatives and their prices), the utility would 
drop-off rapidly above a latent threshold price, 
making the negatively skewed distribution a bet-
ter alternative to the symmetric normal or posi-
tively skewed Gumbel distribution1. Also, the EC 
model has applicability in choice contexts where 
the perceived attractiveness of different options is 
bounded15. An attractive feature of the EC model 
is that it has a closed-form probability expression 
but without the limiting IIA property of the MNL 
model1. Also, the heteroscedastic extension of the 
EC model has a closed-form choice probability 
unlike the HEV model which entails evaluation of 
a one-dimensional integral2, 4.

Along similar lines, researchers devel-
oped choice models using distributions with 
restricted range for εd,i terms akin to the expo-
nential distribution used in the EC model. 
However, closed-form probability in these 
choice models is obtained only when ideal utili-
ties Vd,i are equal across all choice alternatives, 
i.e. Vd,i = Vd∀i . For example, Beilner and Jacobs 
developed a choice model with Weibull-distrib-
uted utility functions for analyzing route choice 
preferences where ideal utility Vd,i = 0 for all 
route alternatives. In the route choice context, it 
is reasonable to assume that route choice utili-
ties are bounded from above by 0 given that the 
main factors affecting route choice are travel 
times and costs15. This model is equivalent to 
the model developed by Castillo under the ran-
dom disutility minimization (RDM) decision 
rule with independent Weibull distributed route 
costs and the traveler is assumed to choose the 
least cost route11. This is because the RDM deci-
sion rule with disutility Ũd,i = εd,i is equivalent 
to the RUM decision rule with additive inverse 
utility, i.e. Ud,i = −εd,i.

Another model that bears close resemblance 
to the Weibit model is the choice model with mul-
tiplicative errors20. In the multiplicative errors 
model, the utility associated with alternative i is 
specified as: Ud,i = Vd,iεd,i , where Vd,i < 0 and 
εd,i > 0 is assumed to be an exponential random 
variable. The negative sign assumption of Vd,i is 
reasonable in applications where observed util-
ity can be interpreted as generalized cost. This 
model with multiplicative errors can be viewed 
as MNL model with non-linear utility function 
given by − ln

(

−Vd,i

)

 because natural logarithm 
of exponential random variable has reverse Gum-
bel (or additive inverse of Gumbel) distribution. 
Among continuous random variables with posi-
tive domain, the exponential distribution is the 
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maximum entropy distribution implying that it 
assumes minimum information about unknown 
factors that influence the utility function20. The 
choice model with multiplicative errors was 
found to have a better statistical fit and different 
willingness-to-pay (WTP) measures compared to 
standard MNL model in Danish and Swiss mode 
choice contexts.

More recently, a generalized choice model with 
q-product disutility functions was developed that 
encompasses choice models with additive, multipli-
cative, or in-between relationship between system-
atic and random utility components depending on 
the value of parameter q. The disutility associated 
with alternative i is specified as: Ud,i = Vd,i ⊗q εd,i , 
where the q-product operator ⊗q is defined as  

follows: Vd,i ⊗q εd,i =

[

V
1−q
d,i + ε

1−q
d,i − 1

]
1

1−q
 and 

V
1−q
d,i + ε

1−q
d,i − 1 > 0 . The parameter q deter-

mines the degree of dependence between Vd,i and 
variance of Ud,i . Specifically, when q = 1 , 
Ud,i = Vd,iεd,i and variance increases at the rate of 
V 2
d,i and the distribution is equivalent to the Weibull 

distribution Alternatively, when q = 0 , 
Ud,i = Vd,i + εd,i − 1 and the distribution is 
equivalent to the reverse Gumbel distribution. This 
implies that both logit and Weibit choice models 
can be re-framed as special cases of choice model 
with q-product disutility functions in the random 
disutility minimization (RDM) framework13. The 
q-product choice models were found to outper-
form the standard MNL model in both route and 
travel mode choice travel contexts.

More recently, a new class of RUM models 
with kernel errors that are sum of two independ-
ent random variables, one of which has Gum-
bel distribution were developed. Four different 
choice models that belong to this new class of 
RUM models were proposed. These include 
choice models where (a) all kernel errors are dif-
ference of independent Gumbel and exponential 
random variables; (b) a subset of kernel errors are 
Gumbel random variables and remaining kernel 
errors are different of Gumbel and exponential 
random variables; (c) all kernel errors are logis-
tic random variables; and (d) a subset of kernel 
errors are logistic and remaining are Gumbel 
random variables. These choice models do not 
have the restrictive ‘Independence from Irrel-
evant Alternatives’ (IIA) property, accommodate 
heteroscedasticity between choice alternatives 
with Gumbel and non-Gumbel error terms, and 
have closed-form probability expressions12. Also, 
models with non-Gumbel errors either have sym-
metric (in the case of logistic errors) or positively 

skewed utility functions (in the case when errors 
are difference of Gumbel and exponential ran-
dom variables). These models were found to be 
good competitors to the standard MNL model 
in the mode choice context12. These new choice 
models were found to marginally better or at least 
as good model fit as the standard MNL model in 
mode choice context in Japan.

More recently, choice models with heavy 
tailed t-distributed kernel errors were developed 
and found to perform better in choice contexts 
with class-imbalanced datasets16. For instance, 
the model with t-distributed errors was found 
to have better data fit in new vehicle purchase 
choice data with class-imbalance where the 
share of EVs was (32%) compared to gasoline-
fueled vehicles (64%) amd opt-out alternative 
(4%). In this model, the vector of kernel errors 
εd =

(

εd,1,εd,2, . . . εd,J
)′

 is assumed to be a multi-
variate t-distributed random vector with δ degrees 
of freedom (DOF). The marginal distribution of 
kernel error εd,i is univariate t-distribution with 
δ DOF. However, the difference of two t-distrib-
uted random variables is not t-distributed even 
in the special case when the t-distributions are 
independent. So, it is unclear how researchers 
resolved this inconsistency in their model formu-
lation because calculation of choice probabilities 
involves working with the cumulative distribu-
tion function of utility differences.

While there have been several attempts to 
explore alternate distributions for kernel errors, 
none of these models work with the normal distri-
bution. Normal distribution has two key proper-
ties that makes it perfectly suited for complex 
dependency patterns in choice outcomes—(1) aff-
ine property which implies that linear transforma-
tions of multivariate normal random variables also 
have normal distribution, i.e. if X ∼ MVN (µ,�) 

then Y = AX + b ∼ MVN
(

Aµ+ b,AΣA
T
)

 ; 

and (2) linear combinations of two multivariate 
normal random variables also has multivariate 
normal distribution. These two properties of nor-
mal random variables is highly desirable in choice 
scenarios including complex spatio-temporal 
dependency patterns where choices of consumers 
are inter-dependent and choices of the same con-
sumer across multiple choice occasions are corre-
lated, and integrated choice and latent variable 
(ICLV) models that incorporate latent psychologi-
cal constructs in choice models8, 17, 25, 39. Recently, 
the MNP model with multivariate truncated nor-
mal distribution for kernel errors, referred to as the 
multinomial truncated probit (MNTP) model was 
developed34. The resulting model can 
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accommodate utility functions with any arbitrary 
bounds and skewness patterns across choice alter-
natives and can be estimated using the traditional 
GHK simulator. The ability of the maximum sim-
ulated likelihood (MSL) inference method to 
retrieve the model parameters was shown using 
simulation analysis. Also, the practical applicability 
of the proposed model was demonstrated in airline 
itinerary choice context where the kernel errors of 
the inside itinerary options were normal random 
variables truncated from above at zero and the ker-
nel error of the outside option of not choosing to 
fly was regular normal random variable34.

Alternatively, researchers developed a semi-
parametric method that does not require any 
prior assumptions regarding the distribution of 
kernel error terms. These models have the logit 
probability structure where the linear determin-
istic utility component Vq,i is replaced by a sen-
sitivity function Sq,i whose functional form is 
determined by the data28. These methods were 
developed in the context of random disutil-
ity minimization where alternative costs are 
assumed to be random variables independent 
across choice alternatives. The kernel errors in 
this model are assumed to belong to a large class 
of distributions with the following functional 
form for the cumulative distribution function, 
F
(

εd,i < t
)

= 1− [1− Fb(t)]
αd,i , where Fb(t) is 

a base distribution function and αd,i is a param-
eter specific to decision-maker d and alterna-
tive i. This method is based on the idea that any 
random variable with a cumulative distribution 
function of the form described above can be 
transformed into a Gumbel random variables as 
follows: h(t) = 1

θ
log

(

− log [1− Fb(t)]
)

 where θ 
is the scale parameter.

So, random costs εd,i in the original formu-
lation are transformed into Gumbel random 
variables ηd,i = h

(

εd,i
)

 with cumulative density 
function given by: G

(

ηd,i < t
)

= 1− e−αd,ie
θ t

 . 
The sensitivity function Sq,i in the probabil-
ity expression is defined as ln

(

Hq,i

)

 where Hq,i 
is the relationship between the means of kernel 
error before and after the transformation h

(

εd,i
)

 . 
Assuming random costs εd,i to have exponen-
tial distribution is equivalent to the MNL model 
with logarithmic transformation of random costs 
as was the case in the Weibit model and choice 
model with multiplicative errors11, 20. In addition 
to exponential distributed random costs, Li pro-
vided the non-linear transformation function h(t) 
and corresponding sensitivity function Sq(t) for a 
wide array of parametric distributions including 
exponential, Pareto, type II generalized logistic, 
Gompertz, Rayleigh, and Weibull distributions. 

Although this method subsumes several other 
choices models as special cases, it is not neces-
sary to assume a specific distribution for random 
costs. In fact, Li used p-splines to approximate the 
unknown sensitivity function Sq,i as a linear com-
bination of several B-spline basis functions and 
the resulting model was estimated using Bayesian 
methods. The performance of the proposed semi-
parametric method was compared against the 
standard MNL and choice model with multiplica-
tive errors for analyzing mode choice preferences 
in two different contexts in Denmark. The model 
where the functional form of Sq,i was obtained 
from data clearly outperformed the parametric 
models in one of the datasets whereas there were 
not any significant differences across models in 
the other dataset.

Also, semi-non-parametric choice model 
based on orthonormal Legendre polynomial was 
developed to construct a semi-parametric dis-
tribution function that encompasses the Gum-
bel distribution as a special case41. The resulting 
model can accommodate multi-modal density 
functions for kernel errors and was used to ana-
lyze commute mode choice preferences among 
four alternatives (auto, transit, bicycle, and walk) 
in Switzerland. Unlike unimodal density func-
tions that dominated the literature, this study 
found evidence for bi-modal density function of 
the kernel error term in utility function of tran-
sit alternative. The multiple peaks in multi-modal 
distribution of the kernel error of an alternative 
can be interpreted as the presence of latent popu-
lation groups with different unobserved prefer-
ences and attitudes toward that choice alternative. 
For instance, a dominant group of commuters 
with positive attitudes toward transit are asso-
ciated to major mode of kernel distribution 
whereas a smaller group of commuters with neg-
ative attitudes toward transit are associated with 
the minor mode of the bi-modal kernel distri-
bution. However, as the authors note, one of the 
limitations of this study is that the computation 
complexity of the model increases substantially 
with the number of polynomial functions used 
for constructing the semi-parametric density 
function and the number of choice alternatives.

4  Conclusion
Choices models with unbounded and positively 
skewed (e.g., multinomial logit (MNL)) and sym-
metric (e.g., multinomial probit (MNP)) utility 
functions dominated the empirical literature. The 
closed-form probability expression with Gumbel 
errors and the affine property of normal random 
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variables combined with efficient estimation 
methods are the primary reasons for the domi-
nance of MNL/MNP models and their variants. 
However, there is renewed interest in developing 
choice models with more flexible kernel errors 
for both behavioral and accuracy reasons. While 
the research in this arena is relatively sparse, there 
have been quite varied and unique approaches to 
accommodate alternate kernel error structures in 
choice models. This paper provided an overview 
of these methods that span both parametric and 
non-parametric distributions for kernel errors. 
While some of these models are easily estimable 
given their closed-form probability structure, 
others require simulation techniques such as the 
GHK simulator or Bayesian methods in case of 
semi-parametric methods. In summary, these 
choice models with flexible kernel errors were 
shown to perform better or at least as good as 
existing models with flexible heteroscedasticity 
and substitution patterns across choice alterna-
tives. It is interesting that, in spite of their wider 
applicability beyond transportation, most of 
these studies were undertaken in the travel mode 
and route choice contexts.

However, there are a couple of avenues for 
further improvement in this area. Firstly, the 
distribution of kernel error of an alternative is 
closely tied to the specification of the observed 
part of the utility function for that alternative. 
Non-linear systematic utility functions and util-
ity functions that violate the regularity assump-
tion (which implies that systematic utility of an 
alternative does not depend on other alterna-
tives) can accommodate a wide range of behav-
ioral and substitution patterns without 
necessarily changing the standard assumptions 
underlying kernel error terms26. For instance, in 
the random regret minimization (RRM) frame-
work, the systematic utility of an alternative 
takes a non-linear form where the utility of an 
alternative depends on better alternatives in the 
choice set that would be forgone if that alterna-
tive was chosen14. The RRM model with reverse 
Gumbel distribution has closed-form probabili-
ties and does not have the restrictive IIA prop-
erty unlike the MNL model in RUM framework. 
Also, any choice model with choice probabilities 
Pd,i can be written as a special case of “Mother 
Logit” model with iid Gumbel errors and sys-
tematic utility function given by ln

(

Pd,i
)

 26. The 
resulting mother logit model has a highly non-
linear utility function where the effective sys-
tematic utility of an alternative ln

(

Pd,i
)

 depends 
on all alternatives in the choice set. While this 

Observed or systematic 
utility: The part of the utility 
function of an alternative 
that is composed of factors 
known to the analyst; typi-
cally parameterized as a linear 
function of attributes describ-
ing the choice alternative and 
decision-maker.

may be a pure mathematical artifact, it does 
allude to the possibility that non-linear utility 
functions and kernel error structures are inter-
dependent. So, further research is needed to 
understand the relationship between specifica-
tion of the systematic utility function and the 
necessity to explore flexible kernel errors. Sec-
ondly, random taste heterogeneity and kernel 
error terms can be confounded. For instance, 
the mixed logit model with Gumbel kernel error 
terms can closely approximate any discrete 
choice model derived from random utility max-
imization (RUM)32. It is possible that models 
with alternate kernel error distributions are 
more parsimonious than mixed logit models 
that attempt to approximate these models using 
random parameters. So, further research is 
needed to provide guidance on the choice 
between mixed logit and choice models with 
alternate kernel error structures.
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