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A p‑adic Waldspurger Formula and the Conjecture 
of Birch and Swinnerton‑Dyer

1 Introduction
The Birch and Swinnerton-Dyer conjecture is a 
fundamental problem about the arithmetic of 
elliptic curves. It connects the structure of the 
rational points on an elliptic curve over Q to the 
analytic properties of its associated Hasse–Weil 
L-function.

A spectacular result towards the BSD conjec-
ture is due to Gross–Zagier and Kolyvagin:

Here E/Q is an elliptic curve, L(s, E) the associated 
Hasse–Weil L-function, E(Q) the group of 
rational points and X(E) the Tate–Shafarevich 
group. In the mid 1980’s Gross and Zagier38 
proved a remarkable formula relating central 
derivative of the L-function L(s,E/K ) associated 
to E over an imaginary quadratic field K in terms 
of the Néron–Tate height of a Heegner point 
yK ∈ E(K ) . A few years later, Kolyvagin52 
invented the method of Euler systems, in particu-
lar showing the non-torsion-ness of yK  implies 
rankZE(K ) = 1 and #X(E/K) < ∞.. An apt 

choice of K then yields (1).
The general principles of Iwasawa theory sug-

gest that p-adic analogues of the Gross–Zagier 
formula may also shed some light on the BSD 
conjecture. In an inspired followup to38 Perrin-
Riou proved a p-adic analogue55 for primes p 
of good ordinary reduction, which expresses 

ords=1L(s, E) ≤ 1 =⇒ rankZE(Q)
= ords=1L(s, E), #X(E) < ∞. (1)
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Abstract | About a decade ago Bertolini–Darmon–Prasanna proved a 
p‑adic Waldspurger formula, which expresses values of an anticycloto‑
mic p‑adic L‑function associated to an elliptic curve E/Q outside its defin‑
ing range of interpolation in terms of the p‑adic logarithm of Heegner 
points on E. In the ensuing decade an insight of Skinner based on the 
p‑adic Waldspurger formula has initiated a progress towards the Birch 
and Swinnerton‑Dyer conjecture for elliptic curves over Q , especially 
rank one aspects. In this note we outline some of this recent progress.
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derivative of a cyclotomic p-adic L-function 
Lp(E/K ) in terms of the p-adic height of the 
Heegner point yK  . Unlike the Néron–Tate height, 
the p-adic height is not known to be non-zero on 
non-torsion points in general. However the non-
vanishing is known for CM elliptic curves, which 
led Rubin to results towards the BSD conjecture 
for rank one CM curves, such as the finiteness 
of the p-part of the Tate–Shafarevich group57 
and the p-part of the BSD formula60. Rubin’s 
approach relies on an Iwasawa theory of Lp(E/K ) , 
specifically the Iwasawa main conjecture and 
also transpires a converse to (1). Due to the lack 
of knowledge regarding non-vanishing of p-adic 
heights for non-CM curves, the general rank one 
case remained largely elusive.

In the early 90’s Rubin discovered a formula59 
relating value of a Katz p-adic L-function outside 
its defining range of interpolation to the p-adic 
logarithm of a Heegner point on the underlying 
CM elliptic curve. This formula initiated Perrin-
Riou’s formulation of p-adic variant of the Beil-
inson conjecture, which concerns the arithmetic 
of motivic p-adic L-values outside the defining 
range of interpolation. In light of the p-adic Bei-
linson conjecture a natural problem: non-CM 
analogue of Rubin’s formula. After almost two 
decades of search, Bertolini–Darmon–Prasanna 
found such an analogue1, which links values of an 
anticyclotomic p-adic L-function Lv(E/K ) outside 
the interpolation region to the p-adic logarithm 
of the Heegner point yK ∈ E(K ) . The formula 
echoes the Gross–Zagier formula as well as the 
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Waldspurger formula. Subsequently, Liu–Zhang–
Zhang developed an automorphic framework53 
which interprets the Bertolini–Darmon–Prasanna 
formula as a p-adic Waldspurger formula, thereby 
generalising it considerably.

It is intriguing that the p-adic world manifests 
distant incarnations of the Heegner point yK  in 
the guise of the p-adic Gross–Zagier formula and 
the p-adic Waldspurger formula.

Skinner sought the relevance of the p-adic 
Waldspurger formula to the BSD conjecture and 
observed that certain rank one aspects of the BSD 
conjecture may be amenable to Iwasawa theory. 
Notice the Heegner point yK  is non-torsion if 
and only if its p-adic logarithm is non-zero, that 
is, a special value of Lv(E/K ) is non-zero. The 
Iwasawa–Greenberg main conjecture relates non-
vanishing of such a p-adic L-value to finiteness of 
a Selmer group. Skinner64 proved that a divisibil-
ity towards the main conjecture is closely related 
to a p-converse to the Gross–Zagier and Koly-
vagin theorem:

Conjecture 1.1 Let E be an elliptic curve over Q . 
Let p be a prime and Selp∞(E)  the associated p∞

-Selmer group. Then 

A refinement of this approach due to Jetchev–
Skinner–Wan42 showed that the p-part of the 
BSD formula for rank one elliptic curves E/Q is 
typically a consequence of the Iwasawa–Green-
berg main conjecture for Lv(E/K ) . The insight 
of Skinner has initiated the exploration of Iwa-
sawa theory of Lv(E/K ) , as well as the p-con-
verse and the p-part of the BSD formula, often 
in conjunction with complementary tools. An 
important result towards the main conjecture is 
due to Wan73. About the same time as64, Zhang81 
proved results towards (p-cv) via an independent 
approach, which has also been instrumental.

Since the work of Skinner and Zhang, the 
p-converse continues to be studied in various 
settings, leading to a key progress towards (p-
cv). Iwasawa theory of elliptic curves under-
lies much of the progress. In combination with 
results of Bhargava and Shankar2,3, this proves the 
BSD conjecture for a large proportion of elliptic 
curves over Q4,5. As of now the resolution of (p-
cv) is incomplete even for CM elliptic curves. For 
instance, a missing case relates to the congruent 
number problem.

This note is meant to be a brief introduction 
to some of the progress towards the BSD conjec-
ture, especially rank one aspects.

(p−cv)
corankZpSelp∞(E) = 1 =⇒ ords=1L(s,E) = 1.

After recalling the Birch and Swinnerton-Dyer 
conjecture for elliptic curves over Q in Sect. 2.1, 
we describe a few of the representative results 
toward the conjecture in Sects. 2.2 and 2.3. Some 
of the results are then viewed a little more closely 
in Sect. 3.

The papers of Bloch–Kato7 and Kato43–45,47 
are excellent introductions to the arithmetic of 
special values of L-functions and Iwasawa theory, 
while24,61,63,69,71,82 are some of the surveys of the 
BSD conjecture.

2 �The�Birch�and Swinnerton‑Dyer�
Conjecture

We describe the BSD conjecture for elliptic curves 
over Q and then survey some of the results.

2.1  The BSD Conjecture
2.1.1 �The�BSD�Conjecture77,�As�Stated�

by Birch6�and Tate68:

Conjecture 2.1 (The Birch and Swinnerton-
Dyer Conjecture) Let E/Q be an elliptic curve. 

(a) The Hasse–Weil L-function L(s,  E) has an 
analytic continuation to the entire complex 
planeA and 

(b) The Tate–Shafarevich groupX(E)is 
finite and 

 for

•	 r = ords=1L(s,E),
•		 cp(E) the Tamagawa number at p: the cardi-

nality of the component group of the special 
fiber of the Néron model of E over Zp,

•		 �E ∈ C× the Néron period: 

•		

 where ω ∈ �1(E/Z) is a Z-basis of the dif-
ferentials of the Néron model  E/Z of E,

(BSD)ords=1L(s,E) = rankZE(Q).

L(r)(1, E)
r! · ΩE · reg(E)

=
#X(E) · p cp(E)

#E(Q)2tor

(BSD-f)

�E =

∫

E(R)
|ω|,

A This conjecture of Hasse, Taniyama–Shimura and Weil is 
famously proved by Wiles76 etal.
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•		 reg(E) the regulator of the Néron–Tate 
height pairing on E(Q).

•		
The order of vanishing ords=1L(s,E) of L(s, E) at 
s = 1 is called the analytic rank of E. So the con-
jecture (BSD) is that the analytic rank of E equals 
the Mordell–Weil rank of E. The equality (BSD-f) 
is referred to as the BSD formula.

In the case ords=1L(s,E) ≤ 1 the left hand side 
of (BSD-f) is known to be a rational number. In 
particular, we may ask whether the same power of 
a prime p appears in both sides of (BSD-f). This 
‘p-part of the BSD formula’ is the focus of some 
of the results described in Sects. 2.2 and 2.3.

2.1.2 �Selmer�Groups�and the�BSD�Conjecture
The Selmer group of E encodes E(Q) and X(E) 
at once, and is often more amenable to study.

Let p be a prime and T = TpE = lim
←−n

E[pn] 

the p-adic Tate module of E. Let 
A = T ⊗Zp Qp/Zp = E[p∞] . The p∞-Selmer 
group Selp∞(E) is a subgroup of the Galois coho-
mology group H1(Q,A) which appears as the 
middle term of the short exact sequence

In view of the exact sequence (2) Conjecture 2.1 
suggests the following.

Conjecture 2.2 Let E/Q be an elliptic curve. The 
following are equivalent: 

(a) rankZE(Q) = r andX(E)is finite.
(b) corankZpSelp∞(E) = r for p a prime.

(c) ords=1L(s,E) = r.

Moreover, the BSD formula (BSD-f) holds under 
any of (a), (b), and (c).

Part (b) follows from part (a) just by (2). We 
refer to ‘ (b) =⇒ (c) ’ as a p-converse: a p-adic 
criterion to have analytic rank r. In Sects. 2.2 
and 2.3 we survey results towards this and other 
implications, including (BSD-f) whenB r ∈ {0, 1}.

0 → E(Q)⊗Z Qp/Zp → Selp∞(E)
→ X(E)[p∞] → 0. (2)

2.2  Results I
We describe some of the principal results towards 
the BSD conjecture.

2.2.1 �A�Theorem�of Coates–Wiles�and Rubin
The first general results towards the BSD conjec-
ture were proved for CM elliptic curves.

Theorem 2.3 Let E/Q be a CM elliptic curve. Then 
L(1, E) = 0 =⇒ #E(Q) and #X(E) < ∞.

The finiteness of E(Q) is due to Coates–
Wiles31 and that of X due to Rubin57.

The methods employed by Coates and Wiles 
made a surprising connection between Iwasawa 
theory and the BSD conjecture. Since then, Iwa-
sawa-theoretic methods have been one of the 
main tools for studying the arithmetic of elliptic 
curves.

2.2.2 �The� Theorem� of  Gross–Zagier�
and Kolyvagin

After the work of Coates and Wiles in the 1970’s, 
the next spectacular result towards the BSD con-
jecture came in the 1980’s and was due to Gross–
Zagier38 and Kolyvagin52.

Theorem 2.4 Let E/Q be an elliptic curve. Then

In the case ords=1L(s,E) = 1 the method of 
proof yields a systematic construction of non-
torsion points in E(Q) : Heegner points39.

In the case L(1,E)  = 0 the result was inde-
pendently proved by Kato in the early 1990’s46. In 
fact, Kato proved the upper bound for Selp∞(E) 
predicted by (BSD-f) for all but finitely many 
explicit p. Inspired by46, a cyclotomic approach 
to the the r = 1 case of Theorem 2.4 is given in25. 
Unlike Kolyvagin, the approach leads to an upper 
for Selp∞(E) predicted by (BSD-f).

2.2.3 �A�Rank�Zero�p‑Converse
Advances on the Iwasawa theory of elliptic curves 
have led to p-converses to Theorem 2.4.

Theorem 2.5 Let E/Q be an elliptic curve with 
conductor N. Let p ≥ 3 be a prime at which E has 
ordinary reduction. Suppose: 

(irrQ)  The mod p Galois representation E[p] is 

ords=1L(s, E) ≤ 1 =⇒ rankZE(Q)
= ords=1L(s, E)and #X(E) < ∞.

B For r ∈ {0, 1} a conjecture of Katz and Sarnak48 posits that 
50% of the elliptic curve over Q have analytic rank r.
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absolutely irreducible.
(ram)  There exists a prime ℓ||N  , ℓ  = p , such 

that E[p] is ramified at ℓ.

 Then

This p-converse is largely due to Skinner and 
Urban around the mid 2000’s62,65. More recently, 
Wan75 established a p-converse for primes 
p of supersingular reduction. As for reduc-
ible primes, a progress is due to Greenberg and 
Vatsal37.

2.2.4 �The�BSD�Formula:�Rank�Zero�Case

Theorem 2.6 Let E/Q be an elliptic curve with 
conductor N. Let p ≥ 3 be a prime at which E has 
ordinary reduction. Suppose: 

(irrQ)  The mod p Galois representation E[p] is 
absolutely irreducible.

(ram)  There exists a prime ℓ||N  , ℓ  = p , such 
that E[p] is ramified at ℓ.

If L(1,E)  = 0 , then the p-part of the BSD for-
mula (BSD-f) holds:

This p-part of the BSD formula is due to 
Kato and Skinner–Urban around the mid 
2000’s46,62,65. Indeed, the formula is a con-
sequence of the cyclotomic main conjecture 
for E. Similarly, a supersingular case follows 
from46,49,75.

If p ∤ N  and E is semistable, then the hypothe-
sis (ram) of Theorem 2.6 is always satisfied. How-
ever, it is never satisfied by CM curves.

Theorem 2.7 Let E/Q be a CM elliptic curve. If 
L(1,E)  = 0 , then the BSD formula (BSD-f) holds:

This is a main result of15, which relies on the 
framework of the equivariant Tamagawa number 
conjecture34,35. The p-part of the CM BSD for-
mula when p ∤ #O×

K  for K the CM field goes back 
to Rubin58.

corankZpSelp∞(E) = 0 =⇒ L(1,E) �= 0.

L(1, E)
ΩE

−1

p

= #X(E) ·
∞

c (E)
−1

p

.

L(1, E)
ΩE

=
#X(E) · ∞ c (E)

#E(Q)tor2
.

2.3  Results II
We describe more recent results towards the BSD 
conjecture.

2.3.1 �p‑Converse� to  a� Theorem� of  Coates–
Wiles�and Rubin

Theorem 2.8 Let E/Q be a CM elliptic curve and 
p a prime. Then

In the early 1990’s Rubin58 proved this p-converse 
when p ∤ #O×

K for K the CM field, the hypothesis 
being essential to employ the Euler system of ellip-
tic units. In particular, the case p = 2 remained 
open. The unconditional p-converse is recent13,18.

Remark 2.9 In combination with67, the 2-con-
verse leads to the first example of a quadratic 
twist family of elliptic curves for which the even 
parity case of Goldfeld’s conjecture33 holds. 
In13,18 the even parity case of the conjecture is 
proved for the congruent number elliptic curve: 
Let E(n) : y2 = x3 − n2x be a congruent number 
elliptic curve. Then,

2.3.2 �p‑Converse� to  the� Gross–Zagier� and�
Kolyvagin�Theorem

Theorem 2.10 Let E/Q be an elliptic curve with 
conductor N and p ∤ 6N  a prime at which E has 
ordinary reduction. Suppose: 

(irrQ)  The mod p Galois representation E[p] is 
absolutely irreducible.

(ram)  There exists a prime ℓ||N  such that E[p] 
is ramified at ℓ.

 Then,

The first general results towards this p-converse 
were independently due to Skinner64 and Zhang81 
a few years back. Other results in the same vein 
can be found in25,28,30,74. The version in this The-
orem will appear in26.

corankZpSelp∞(E) = 0 =⇒ L(1,E) �= 0.

L(1,E(n))  = 0 for a density one set of integers

n ≡ 1, 2, 3 mod 8.

corankZpSelp∞(E) = 1 =⇒ ords=1L(s,E) = 1.
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C In part the p-converse was sparked by the non-vanish-
ing10,14.

The hypothesis (ram) is never satisfied by CM 
curves. A rank one p-converse for CM curves:

Theorem 2.11 Let E/Q be a CM elliptic curve 
with conductor N and p ∤ 6N  a prime. Then,

For p also a prime of ordinary reduction, this 
p-converse was proved in13. It is a rare instance 
where the non-CM case64,81 preceded the CM 
caseC. The hypothesis p > 3 is removed in20,78. The 
supersingular case will appear in27 (see also22,23). 
Another approach which generalizes to CM 
curves over totally real fields is given in20,21,24.

2.3.3 �The�BSD�Formula:�Rank�One�Case

Theorem 2.12 Let E/Q be an elliptic curve with 
conductor N. Let p > 3 be a prime at which E has 
ordinary reduction. Suppose: 

(irrQ)  The mod p Galois representation E[p] is 
absolutely irreducible.

(ram)  There exists a prime ℓ||N  , ℓ  = p , such 
that E[p] is ramified at ℓ.

 If ords=1L(s,E) = 1 , then the p-part of the BSD 
formula (BSD-f) holds:

The first general results towards the p-part but 
with additional conditions on p were inde-
pendently due to Jetchev–Skinner–Wan42 and 
Zhang81 in the mid 2010’s. Other results in the 
same vein were established in4,30,66. The result 
stated in Theorem 2.12 is proved in25.

The p-part of the BSD formula for CM curves 
when p ∤ 2N  is a consequence of the main con-
jecture58 in combination with the p-adic Gross–
Zagier formulas50,55.

3 �A�p‑Adic�Waldspurger�Formula
We describe the p-adic Waldspurger formula and 
outline its key role in some of the recent results 
towards the p-converse and the p-part of the BSD 

corankZpSelp∞(E) = 1 =⇒ ords=1L(s,E) = 1.

L (1, E)
reg(E) ·ΩE

−1

p

= #X(E)
∞

c (E)
−1

p

.

formula. For a detailed introduction, one may 
refer to63.

3.1  p‑Adic Waldspurger Formula
3.1.1 �Backdrop
Let E/Q be an elliptic curve with conductor N and 
f ∈ S2(Ŵ0(N )) the associated elliptic newform. 
Let p ∤ 2N  be a prime and ap = p+ 1− #E(Fp).

Let K be an imaginary quadratic field. 
Fix an algebraic closure Q and embeddings 
ι∞ : Q →֒ C , ιp : Q →֒ Cp . Let τ ∈ Gal(C/R) 
denote the complex conjugation, which induces 
the non-trivial element in Gal(K/Q) via ι∞.

Suppose the following Heegner hypothesis:

Also suppose that p splits in K:

with v determined via ιp and that

In view of (Heeg) let yK ∈ E(K ) be the Heegner 
point arising from the modular parametrisation 
X0(N ) ։ E and the CM points on X0(N ) with 
endomorphism ring OK .

Let χK  denote the quadratic character of Q 
associated to the extension K/Q and 1 the iden-
tity Hecke character of K. Let Ŵ be the Galois 
group of the anticyclotomic Zp-extension of K 
and � := Zp[[Ŵ]] the Iwasawa algebra. Let super-
script ι denote the involution of � arising from 
the inversion on Ŵ . Let �ur = �⊗̂ZpW (Fp) and 
ξ�ur(·) denote the �ur-characteristic ideal.

3.1.2 �The�Formula
Let Lv ∈ �ur be the anticyclotomic p-adic 
L-function associated to f as in1,8.

It interpolates the Rankin–Selberg central 
L-values associated to the self-dual pairs (f , ν) 
for ν ∈ � , where � denotes the set of arithmetic 
Hecke characters of K with corresponding Galois 
character factoring through Ŵ and having Hodge–
Tate weight at v at least 1. In particular, any finite 
order Hecke character of K—notably 1—lies out-
side the defining range of interpolation. An arith-
metic interpretation of such p-adic L-values is 
given by the following1.

Theorem 3.1 Let Lv be the anticylotomic p-adic 
L-function as above. Then

(Heeg)Each prime dividing N splits in K .

(spl)(p) = vv

(disc)The discriminant DK is odd and DK  = −3.
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   for some u ∈ (Zur
p )× . In particular,

‘In particular’ part is a consequence of the 
Gross–Zagier formula38,79,80:

for (∗) an explicit non-zero constant and �−,−�NT 
the Néron–Tate height pairing. Strikingly, it pro-
vides a criterion for the non-vanishing of central 
derivative of the Hasse–Weil L-function L(s,E/K ) 
in terms of a value of the p-adic L-function Lv.

The construction of Lv is based on the Wald-
spurger formula75 which expresses the Rankin–
Selberg L-values in the interpolation region as the 
square of K×-toric periods of f. Coleman’s theory 
of p-adic integration32 lies at the heart of the 
proof of Theorem 3.1. This is a notable departure 
from backdrop of the Gross–Zagier formula and 
its p-adic analogue which is rooted in arithmetic 
intersection theory.
•		 Remark 3.2 An analogous formula holds for 

any finite order characters of Ŵ.
•		 Liu–Zhang–Zhang53 developed an automor-

phic framework which interprets Theorem 3.1 
as a p-adic Waldspurger formula, thereby 
generalising Theorem 3.1 to modular ellip-
tic curves over totally real fields, in particular 
allowing generalised Heegner hypothesis over 
Q.

•		 The p-adic Waldspurger formula has influ-
enced the arithmetic of elliptic curves over Q 
especially rank one aspects. For instance, an 
application to Mazur’s conjecture on generic 
non-triviality of Heegner points is given 
in11,12.

3.2  Main Conjectures
Iwasawa theory of the anticyclotomic p-adic 
L-function Lv has initiated a progress towards the 
BSD conjecture. We describe the underlying main 
conjectures, one of which involves Lv in the guise 
of Heegner points.

3.2.1 �Greenberg�Main�Conjecture
The main conjecture for Iwasawa deforma-
tions satisfying the Panchishkin condition due 
to Greenberg36 leads to a conjectural arithmetic 
interpretation of the p-adic L-function Lv.

1̂(Lv) = u

(

1− ap + p

p
· logE(Kv)

(yK )

)2

1̂(Lv) �= 0 ⇐⇒ ords=1L(s,E/K ) = 1.

(3)L′(1,E/K ) = (∗) · �yK , yK �NT

Let � be the finite set of places of K containing 
∞ and the primes above Np. Let K� be the maxi-
mal extension of K unramified outside � and set 
G� = Gal(K�/K ) . Consider a Zp[G�]-module

where T denotes the p-adic Tate module of E and 
(·)∨ the Pontryagin dual and G� acts on � via 
� : G� ։ Ŵ →֒ �×.

Define a discrete Selmer group

and let Xv be its Pontryagin dual. These anticyclo-
tomic Selmer groups interpolate the Bloch–Kato 
Selmer groups H1

f (K ,T ⊗ ν) for ν ∈ �.

Conjecture 3.3 Let E/Q be an elliptic curve with 
conductor N and p ∤ 2N  a prime. Let K be an 
imaginary quadratic field satisfying (Heeg), (spl) 
and (disc). Let Sv and Xv be the associated Selmer 
groups as above, and Lv the p-adic L-function. 
Then  

(a) rank�Sv = rank�Xv = 0,
(b) ξ�ur(Xv) = (Lv).

Remark 3.4 The conjecture first appeared in64. It 
does not require any hypothesis on the image of 
the underlying Galois representation and is inde-
pendent of the choice of a lattice (cf.51, Prop. 2.9).

3.2.2 �Heegner�Main�Conjecture
The eponymous conjecture due to Perrin-Riou56 
concerns Iwasawa theory of Heegner points.

Let X be the Pontryagin dual of the discrete 
Selmer group

and let S = lim
←−n

lim
←−m

Selpm(E/Kn) , where Kn is 

the nth layer of the extension K∞/K .
Let κ0 ∈ Selp∞(E/K ) be the Kummer image 

of the Heegner point yK ∈ E(K ) . If E has good 
ordinary reduction at p, then a variant of the con-
struction of yK  over the layers Kn leads to a norm-
compatible system of generalized Heegner points, 
yielding a Heegner class κ ∈ S which deforms κ0.

M = T ⊗Zp �
∨,

Sv = ker

{

H
1(G� ,M) →

∏

w∈�,w∤p

H
1(Kw ,M)×H

1(Kv̄ ,M)

}

S = lim
−→
n

lim
−→
m

Selpm(E/Kn)
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D This interpolates the Bloch–Kato logarithm along the anti-
cyclotomic tower.
E One may also resort to Kato46.

Conjecture 3.5 Let E/Q be an elliptic curve with 
conductor N and p ∤ N  a prime of ordinary reduc-
tion. Let K be an imaginary quadratic field satisfy-
ing (Heeg). Then 

(a) the Heegner class κ ∈ S is not �-torsion,
(b) rank�S = rank�X = 1,
(c) ξ�Qp

(S/� · κ) · ξ�Qp
((S/� · κ)ι) = ξ�Qp

(Xtor),

for �Qp = �⊗Zp Qp and (·)tor the �-torsion 
submodule.

Moreover if p > 2 and E(K )[p] = 0 , then 

(c’)ξ�(S/� · κ) · ξ�((S/� · κ)ι) = ξ�(Xtor).

The p-adic Waldspurger formula intertwines 
the underlying main conjectures:

(cf.19, Thm. 5.2). Indeed, the equivalence of the two 
main conjectures comes via the non-triviality of 
κ and �-adic analogue of the p-adic Waldspurger 
formula. The latter expresses the p-adic L-func-
tion Lv in terms of the �-adic logarithmD of κ.

3.3  Arithmetic Consequences
We outline an insight of Skinner: the main con-
jectures in Sect. 3.2 lead to the p-converse and the 
p-part of the BSD formula for rank one elliptic 
curves.

3.3.1 �p‑Converse
The subsection describes an approach to (p-cv) 
via Conjecture 3.5.

Let E/Q be an elliptic curve with conductor N 
and p ∤ N  a prime of ordinary reduction. Sup-
pose corankZpE(Q) = 1.

Let K be an imaginary quadratic field satisfy-
ing (Heeg) such that L(1,E ⊗ χK ) �= 0. The exist-
ence of K follows from the parity conjecture and9. 
By the Gross–Zagier and Kolyvagin theoremE, 

notice corankZpSelp∞(E/K ) = 1 . On the other 

hand L(s,E/K ) = L(s,E)L(s,E ⊗ χK ) and so by 
the Gross–Zagier formula (3) the p-converse is 
equivalent to

(4)Conjecture 3.3 and Conjecture 3.5 are equivalent

corankZp
Selp∞(E/K ) = 1

=⇒ yK ∈ E(K ) \ E(K )tor.

To approach the p-converse, it suffices to show 
that the left-hand side of the conjectured equality 
in Conjecture 3.5 (c) divides the right-hand side:

Indeed by Iwasawa-theoretic descent to K for X, 
the hypothesis corankZpSelp∞(E/K ) = 1 implies 
ξ�(Xtor) is not divisible by the augmentation 
ideal of � . The same is then true of ξ�(S/� · κ) , 
which implies—again by descent to K—that κ0 is 
non-torsion and hence that yK  is non-torsion.

For a large class of semistable elliptic curves 
the divisibility (5) is due to Wan73. It is based on 
the Eisenstein congruence approach for the uni-
tary group U(3, 1). The other divisibility may 
often be studied via the Kolyvagin system of 
Heegner points as in30,40,41. Some complementary 
results towards Conjecture 3.5 appear in16,19,30,74.
•		 Remark 3.6 The above approach to the 

p-converse generalises to primes p of good 
supersingular reduction28, as well as the 
primes of multiplicative reduction. An impor-
tant missing case is that of the primes of addi-
tive reduction, even a conjectural framework 
amiss.

•		 Though Conjecture 3.5 is equivalent to Con-
jecture 3.3, the p-converse is a little more 
attuned to Conjecture 3.5. Indeed Conjec-
ture 3.3 yields a p-converse64 under the addi-
tional assumption that #X(E)[p∞] < ∞:: If 

corankZpSelp∞(E) = 1 and X(E)[p∞] < ∞,,  

then observe 1̂(ξ�(Xv)) �= 0 . So Conjec-
ture 3.1 (b) predicts 1(Lv)  = 0 and hence yK  
is non-torsion by Theorem 3.1.

•		
•		 The p-converse theorems in64,74 inherit the 

hypothesis from73, as does81 from65. To treat 
the missing cases, additional ideas seem essen-
tial, shades of which appear in16,30. Theo-
rem 2.10 is based on a new tool: the Euler sys-
tem for E over K, the existence of which is the 
main result of25,26.

3.3.2 �p‑Part�of the�BSD�Formula
The subsection describes an approach to (BSD-f) 
via Conjecture 3.3.

Let E/Q be an elliptic curve with conductor 
N such that ords=1L(s,E) = 1 . Let p ∤ 2N  be a 
prime with

(5)ξ�Qp
(S/� · κ) · ξ�Qp

(

(S/� · κ)ι
) ∣

∣ ξ�Qp
(Xtor).

(6)E(Q)[p] = 0.
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Let K be an imaginary quadratic field satisfying 
(Heeg), (spl) and (disc) so that E(K )[p] = 0 and

By the Gross–Zagier formula (3), the Heegner 
point yK  is non-torsion and so rankZE(K ) = 1 
and #X(E/K) < ∞by Kolyvagin. Thus, in light 

of the Gross–Zagier formula the p-part of the 
BSD formula for E over K is equivalent to

The displayed formula for index of the Heegner 
point is a consequence of Conjecture 3.3: the 
specialisation of Conjecture 3.3 at the identity 
character 1 in conjunction with control theorem 
for the Selmer group Xv (cf. (6)) and the p-adic 
Waldspurger formula (cf. Theorem 3.1). This 
approach to the BSD formula first appeared in42 
to which we refer for details (see also30, §5.3).

As L(s,E/K ) = L(s,E)L(s,E ⊗ χK ) , the p-part 
of the BSD formula for E over Q now reduces to 
the p-part of the BSD formula for E ⊗ χK  over 
Q . At primes p of ordinary reduction this is the 
content of Theorem 2.6. The case of supersingu-
lar primes occasionally follows from46,49,75. We 
conclude that the p-part of the BSD formula for 
E over Q is a consequence of Conjecture 3.3 for 
E and the cyclotomic main conjecture for E ⊗ χ.

For a large class of semistable elliptic curves 
the Lv-counterpart of the divisibility (5) is dueF 

to Wan73. The desired upper bound for #X(E/K) 
in terms of the Heegner point yK ∈ E(K ) may be 
deduced from the Kolyvagin system of Heegner 
points as in30,40,41. Some results towards Conjec-
ture 3.3 can be found in16,19,30,73.
•		 Remark 3.7 This approach to the p-part of 

the BSD formula for E over K uniformly treats 
the primes of ordinary and good supersingu-
lar reduction. The above description of the 
strategy is simplistic: the implementation in42 
involves imaginary quadratic fields satisfy-
ing generalised Heegner hypothesis, not just 
(Heeg) .

L(1,E ⊗ χK ) �= 0.

[E(K)⊗Z Zp : Zp · yK ]2 =

#X(E/K) ·
|N

c2
−1
p

(7)

•		 In contrast to the p-converse, the p-part of 
the BSD formula is more attuned to Conjec-
ture 3.3.

•		 Theorem 2.12 is based on a cyclotomic 
method which relies on the zeta element asso-
ciated to E over K25.
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