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Abstract

A modal analysis and pear-field study for a dielectric-coated conducting sphere excited by a delta function
electric field source has been made. The structure can support an infinite number of modes theoretically.
For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both
even and odd order modes are excited. The variation of the amplitude coefficients both internal and
external exhibit a different nature of variation with respect to the various structure parameters for diffe-
rent modes, The field distributions both in the r and @ directions for non-equatorial excitation show
good agreement between theory and experiment for the strongest mode,
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1. Tatroduction

Scharfman® and Rheinstein? have studied the backscatter and total scattering cross-
sections of dielectric-coated spheres. Yeh?® reported studies cn dielectric-coated prolate
spheroids. Chatterjee ef al have reported theoretical and experimental work on dielectric-
coated conducting spheres excited in the hybrid mode* and in the -TM symmetric modeb,
ChatterjeeS has solved the electromagnetic boundary value problem of the dielectric-
coated conducting sphere excited by delta-function electric and magnetic field sources.
Chatterjee” has also studied the truncated dielectric-coated conducting sphere excited in
the TM symunetric mode as an antenna. Chatterjee et af® have also studied -the radiation
characteristics of dielectric sphere excited in TM mode.

In :the present paper, a modal analysis of the dielectric-coated conducting sphere
excited in the symmetric transverse magnetic mode and a study of the near-field characteri-
stics has been made. The theoretical results for the near figld have been compared with
the experimental results obtained, for truncated dielectric-coated conducting spheres.
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106 PARVEEN WAHID AND R. CHATTERJBE
2. Modal analysis

2.1. Near-field components

The geometry of the dielectric-coated conducting sphere is shown in Fig. 1. The
dielectric-coated conducting sphere is excited in the symmetric transverse magnetic mode,
The source of excitation is assumed to be a delta-function electric field source Fqe
applied pormally and uniformly over an annular ring of radius b sin #; and width
(& — a) sin 6,. ’

2(8=0")
Ly

Dm(a'c;tm:
coating
£q, My, 0 b

a—inner radios of dielectric-coated
0, Mo, Tp conducting sphere

b—outer radius of dielectric-coated
conducting sphere

d—(b — a) coating thickness
fy—-angle of excitation

Y €6y flo, Gg—Permitiivity, permeability
2~ and conductivity of free space

Metal
sphere €o, Mo, 0 4

€1, Yy, Oy—Permittivity, permeability
and conductivity of dielectric

bAG ysin gy material

Fig. 1. Geometry of the structure.
Let,

E, = E, cos 0, and E = E, sin 4 0
be the components of E, in the r and 9 directions respectively, and let

- _ A N
Eo=—prmg, Oy <<t 5
E0=O,for0<6'1—-%o—1and0>01+~%—01 I

where V is the excitation voltage applied across the gap bA9, sin 6, over the annular
ring.

The components E,, and E,, can be expanded in a series of spherical harmonics as
follows

En(r,0,0) = — /‘il z #(n + 1) Doy () P, (cos ) e 3

)
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o0
Eni0.H)= ~ ¢ z Con () P (c05 0) e-10¢ @

where C,, and D,, are constants assuming that (b — 4) < ¢ and &b, i.e., the dielectric-
coating is very thin, we have

Cu @ 2 Gty = 2 CE) f f B, sin. 6.

¢=u =0
X Ph{cos 0) sin 0 4 do

— 512?,1 : 11)) sin 0y P; (cos 6y) 5
ke Qn 1)
Dun (@ = Doa () = 27 (n + 1) f f Eo cos O

@0 G0
X P,(cos®) sin@ d§ do

14 2n+1 '
L ﬁ—l) cos B, P, (cos 0 C®

The field components for the dielectric-coated conducting sphere excited in the symmetric
TM mode are given by [6]
Medium I: a<<r<h
Ef= — S n@+1) Pu(cos ) [Loujalkir) -+ Mu Ya ku?)]
e 4, )
o0
B = — z P (008 0) 7 [Lun Diatia ()T
n=1

+ Mon [ar ya (esr)]1 7% 1 B, @®
= z o P (005 ) [Lun Ju )

+ Mo 30 Ger)] ' o

Medium : r>=5.
o0

Ef= — z nn-1) P, (cos 6) N,,,k-l- MY (ko) 9% . (10)
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o0
1
B = ~2 P (005 0) Now oz Tlor 00 (k)Y e i
=
Hy = Jﬁ: P} (508 0) Ny 10 (Jeor) em1%* 0]
=1

o is theangular frequency, Py (cos 0) = d[a0 [P, (cos N, f, Urwr), vy (k) and B (kyr)
are the spherical Bessel, Neumann and Hankel functions of the (irst kind respectively.
L,, and M,, are the internal amplitude coefficients and N, are the cxternal amplitude
coeflicients.

2.2. Existence of even and odd order wmodes
The eqns. (7-12) show that the field inside and outside the diclectric-coated conducting
sphere is represented as the sum of an infinite number of modes, even and odd. The
existence of odd or even and odd order modes depends on the angle of excitadon 0y,
which is involved in the expressions for C,, and D,, [egns. (3) and (6)].
When @, = 90¢, cotresponding to the case of equatorial excitation, eqn. (5) for the
coefficient C,, becomes
Vi @atl) o, .
Con@ & Cop 0 == 5 (0 4TY POy ) 3)
where,
PLO)= (0O for n even
j‘n—-l 2],—-“ ”!

Therefore taking into account the orthogonalily of the modes, [Appendix I we have
the following results.

for n odd. (14

(i) For equatorial excitation, 0, == 90°, only odd order modes exist for the djelectric-
coated conducting sphere. Then, the components ,, E, and Hy can be represented as

E, = E, |y + E, lpws + B lams 4 0+ (154a)
Lg = Ep Lo - Eg lyms + Ep s + B (158)
Hp = Hp ly= + Hp laos + Hy lms + =7 (13¢)

(i) When 8, # 90° both even and odd order modes exist on the dielectric-coated con-
ducting sphere. The componenis can be represented as

E,=E i + E fumy + E Ly + ' (16 a)

Ey = Eg lpe -+ Eplyma + Eg loma + -+ (16 b)

Hy = Hg lga .+ Hplomz + He lamg + - , (16¢)
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2.3. Boundary conditions

The boundary conditions ate:

(I)E;=E§;H‘;$H$ at r=>b (17)
(i) Ef =0 at r=a. (18)
Using eqns. (7-12) and the boundary conditions, we have
! - ; o Con (b
75 U b (D) 4 Mg i b, Get)] =&
1
= N, b [kob BD (ko(B)] 19)
k. k
2 Do (B - Moy 3 (ko) = 22 N B0 (K D) 20)

Cop (b
CHO on

1 .
i Lol (@)l + Mo, Tkaay, (k aX]'7 -+
1
Using eqn. (5) in the above equations, the amplitude coefficients L,,, M,, and N,, can
be uniquely determined for each value of n.  The field is thus uniquely determined inside
and outside the dielectric-coated copducting sphere for each value of n. Hence it can
be concluded that the TM,, modes exist for n = 1,2,3,- - - etc., for this structure,

2.4. Evaluation of the amplitude coefficients

The internal and external amplitude coefficients Ly, M,y and N, have been numerically
evaluated for different values of (b — a), @, 0y, f and ¢, The first six modes have been
gonsidered in all the above cases. For the case of equatorial excitation, the odd order
modes TMy, TM,; and TM,s have been considered. All the numerical computations
have been carried out with the aid of the IBM 360/44 digital computer.

2.5, Analysis of the amplitude coefficients

(i) The variation of the magnitude of the amplitude coefficients with coating thickness
is shown in Figs. 2-4. The cases a==1-0 to 4:-0cm for constant 0y ==130° have
been studied. The variation in the case of equatorial excitation §, = 90° is shown in
Figs. 5-7. The variation is found to be different in each of the cases studied. It is seen
that the coefficients Af,, show only a slight variation with coating thickness.

(ii) The variation of the magnitude of the amplitude coefficients with inner radius
a, is shown in Figs. 8-10, for ¢, % 90° and in Figs. 11-13 for the case of equatorial exci-
tation. The variation has been studied for fixed values of (b — @) = 0-02, 0-08, 014
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and 0-2cm for fixed values of a ranging from 1-0to 4-0 cm. The variation is found
to be different for each individual mode,

(iti) The variation of the magnitude of L, M,, and N,, with angle 6, for 0, ranging
from 100° to 160° keeping the other parameters fixed is shcwn in Figs. 14 to 16. The
variation for all the three coefficients is found to be oscillatory going through varicus
maximum and minimum values for each of the individual modes for different valhves
of 0,

(iv) A study of the variation of the amplitude coefficients with the frequency of excita-
tion for fixed values of a, b and 6, has been made in the range 8-0to 12-0 GHz. The
results for the case 6+ 90° and 8 = 90° are shown in Figs. 17-19 and Fig. 20 res-
pectively.

(v) The variation of the magnitudeof the amplitude coefficients with the relative per-
mittivity of the coating material is shown in Fig. 21 for the case 0, # 90° and in Fig. 22
for the case 0 = 90°. The values of ¢, ranging from 2-08 to 700-0 corresponding
to the various diclectric materials given in Appendix IT have been considered. The
magnitude of the ampiitude
coefficients is found Lo he sensi- as12¢cms

tive to the value of . Allthe a8 '; =94 ems et HT 2 235 ems
. 121148 =3
coefficients L., M, and N, fre 2,55 :,35592"';
have a maximum and a mind- 3.2} 1.6 Ers 2.86
mum value for a particular A
value of e,.
or & 2.8~ ik

The above considerations re- nat

garding the behaviour of the 24
amplitude coofficients of the
dielectric-coated  conducting

w

sphere can ke explained onthe  _ % o 1o}
basis of the functional depend- = - s ¢
ance of the amplitude co- 15l z 4l
efficients which involve the = § .

<

spherical Bessel, Neumann and val

Hankel fonctions (eqns. 19-21). e

3. Near-field characteristics

The expressions for the field 0.al

O

components outside the dielec- o2

tric-coated conducting sphere "

are given in eqps. (10-12). The ¢ S i B
Freg, in GHz Fteq. in  GH2

external amplitude coefficients
Ny are determined from eqns. Fic, 18. Vatiation of the internal amplitude coefficients, M,,
(19-21). with frequency of excitation, )
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The variation of the field components withf : s
a8 5
< ottf 2 ooy 3

and the radial field decay of these components

has been studied theoretically for the first six

modes for different dieleciric-coated conducting ~ *® % don

spheres at the frequency of excitation | frenon o oe
f=9:375 GHz. Figure 23 shows the variation
with # of the power normalized with respect to
the maximum value for individual modes and
Fig. 24 shows the radial field decay of the
components for the individual modes.

] \N

Fia, 20, Variation of the amplitude coefficien:
L, M,, and N,,, with frequency of excitatio
for equatorial excitation.

4, Experimental measurement of the near-field characteristics

4.1 Iy d dielectric-coated conducting spheres

In order to verify the theoretical investigations, truncated dielectric-coated conducting
spheres of different dimensions were made. The conducting sphere was made of brass
and it was coated with perspex. The truncated dielectric-coated conducting sphere is
terminated in a dielectric-coated cylindrical portion which tapers to a point as a dielectric-
coated. conducting cone to achieve impedence matching at the feed emd (Fig. 25 ().

To excite the symmetric TM mode on the truncated dielectric-coated conducting sphere
a mode transducer is used. The mode transformation is as follows:

(i) Rectangular waveguide (TE;, mode) to
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Fig. 21. Variation of the amplitude coefficients with e, the relative permittivity of the coating
material.

(ii) Coasial line (TEM mode) to

(iii) Troncated dielectric-coated conducting sphere (TM,, modc).

A sketch of the truncated dielectric-coated conducting sphere with the arrangement
for excitation from a rectangular to coaxial transducer is shown in Fig. 25(i). The
specifications of the structures used are given in Appendix JII.

4.1.1. Experimental investigations

(a@) Radidl field decay : The arrangement used for measuring the radial field decay is
shown in Fig. 26a. The field components E,, E, and Hy are measured using the
appropriate probes. The probe is placed very close to the surface of the structure
along an axis corresponding to # == 30°, so that the even and odd order modes that
exist on the structure are taken into account. A view of the structure and the probe
is'shown in Fig. 26b. The experimental results are given in Figs. 27-29 along with
the theoretical resulis for comparison.

(b) Variation of the field components with ( : The arrangement for the measurement
of the variation of the components E,, Ey and Hy with the angle 0 is shown in

&
Y

0.4

‘e
T o

x 2

S o4 001
z° . oly a =40 cms

S

: b« 4t cms
& " i : t = 8.275 GH
<001 3 » 0001 5 = 9-375 Gz

s . 8 6y 90
Y 20001
Dﬂm 1 2 3 o 1 2 E)
leg ir . tog &

Fra. 22, Variation of the amplitude coefficients with e, the relatlve pcrmlthvxty of the coatmg matenal
for equatorial excitation,

L
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Fig. 23. Variation of normalized power with ) for the first six modes,

Fig. 26 ¢c. The probe is placed close to the surface of the structure. The experi-
mental results are given in Figs. 30-32. The theoretical results are also shown for
comparison.

5. Auwalysis

(i) Radial decay © The agreement between the theoretical curve for the strongest mode
and the experimental curve is good for the components E,, Eg and Hy (Figs. 27-29).
The mode for which the external amplitnde cocfficicnt N, is found to have the maxi-
mum value has been tormed the strongest mode of the dielectric-coated conducting
sphere.

(i) Variation with ¢ : it is seen (hat there is good agreement between the experi-
mental results and the theoretical results obtained for the strongest moce for the compo-
nents E,, By and Ilg in all cases (Figs. 30-32).

1.0 1.0
a= 3.5 cms
b:16 cms
6y= 1307
£r= 256
~
o = € = 9.375 GH:
P} w
3 os "=l g
o n:z2 B
5 3 o
£ n=3 g
5 net 3
= n=s <
ne8
\
o = e} o B el ] Sy S
0 0.8 1.6 24 0 0.8 16 24

£ sn cms
r in cms

Fro. 24, Radial field decay for the first six modes.
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Fro. 25. (i) Sketch of the truncated dielectric-coated conducting sphere,
(ii) Sketch of the method of excilotion.

An attempt has been made to make a comparative study of the experimental
curve and the theoretical curve obtained by the summation of the first six modes
(since the modes are orthogonal) for the near field (Figs. 33, 34).

() Radial field decay : As the components H, and £y have a similar functional
variation, only the E, and Eq components have been considered. The radial decay

FIG. 26 (). Experimental sat-up for the measurement of the near field decay,
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Fia, 26 (h). A view of the field sampling probe and the truncated dielectric-coated conducting sphere,

for the E, component shows fair agresment with experiment not only for the strongest
mode but also when compared with the combined modes whereas for the E; compo-
nent the radial decay for thesombined modes exhibits an oscillatory nature (Fig. 33).
This may probably be explained on the basis of the nature of the functions involved, i.e.

Ey= > oot I (e35 D Thor 2 (ko T
Z kot

Fic. 26 (¢). Expernimsntal sst-up for the measurement of the naar fisld variation with (.
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(i) Variation with ( : The variation of

xc3nems the near-field components with ¢ has been

e mcasured by placing the appropriate probe

Sromentmadt Wos very close to the surface of the dieleciric-

'EH % coated conducting sphere.  The experi-

3 i mental curve, the theoretical curve for the

g H strongest mode only and for the combined

: modes for the £, and £y components are

| L ) given in Fig. 34, It is seen that there 15

oo o7 BT T good agreement between the experimental

Fic. 27(8). Radial field decay of normalized curve and the theorclical cusive for the
|E,|% f=9-315GHz, ¢, =2-56. strongest mode.

The comparafive study of the thcoretical and experimental resvlts shows that the
agreement is better in the case of the larger diclectric-coated conducting sphetes than in
ths case of the smaller diclectric-coated conducting spheres (Figs. 27-29). Since the
coating thickness has been assumed to be small, by large dielectiic-coated conducting
spheres it is meant large values of .  Since the mode transducer vsed is the same, it is
obvioas that in the case of the smaller dielectric-coated conducting sphetes the probe
is closer to the discontinuity present at the junction belween the dielectric-coated con-
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Fic. 28 (4), Radial field decay of normalized {Ee [®. F=9-375GHz, e, = 2-56.
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ducting sphere and the mouth of the

2+3Dems 2035 cms

it b325cms L 6536 cms mode transducer, compared to the
R o w::f:;:'m“ larger dielectric-coa}ted conducting
e e s e sphere. Hence it is possible that

- % the direct radiation due to the dis-
u:'»’“_ N Took continuity interferes with the near
H H .. field of the dielectric-coated conduct-
g H ing sphere sampled by the probe.
N In the case of the larger dielectric-
i coated sphere, however, the probe
T s, is at a comparatively larger distance
e T eme {rom the junction and the effect of

Fig. 28 (8). Radial field decay of normalized the discontinuity ficld may not be
| Eg |2 f =9:375GHz, € =256, appreciable. It may therefore be

said that the field samples mostly the near field of the dielectric-coated conducting
sphere in the case of the larger dielectric-coated conducting spheres without being
influenced much by the interfering field.
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Fie, 29. Radial field decay of normalized |Hy |* f =9-375GHz, ¢ =2-56.

Since the rate of decay of the field in the r direction in the case of the smaller dielectric-
coated conducting spheres is very fast, the probe output becomes veiy small when it is
placed away from the surface of the dielectric-coated conducting sphere. Hence no
further study of the interfering field in the case of the smaller dielectric-coated conduct-
ing sphere could be made with the available equipment.

6. Conclusions
The following conclusions can be drawn from the above investigations:

(i) The dielectric-coated conducting sphere can be excited in an infinite number of
symmetric TM modes by a delta-function electric field source.

(ii) The existence of even and odd order or odd order modes only is determined
by the angle of excitation 6.
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(iii) The 11;;;;;131 and external amplitude coeficients are sensitive to the variolis struc-
ture parameters to varying extents.

(iv) The truncated dielectric-coated conducting sphere excited by a coaxial line has-
very nearly the same field configuration as one of the TM,, modes.

(v) The theoretical field distributions obtained in the case of a complete dielectric-
coated conducting sphere and the measured near field curves at a fréquency of 9-375 GHz
agree fairly well.
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Appendix T

Orthogonality of the modes
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Flectromagnetic boundary value problem of the diclectric-coated
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Truncated dieleciric-coated conducting sphere excited in the TM-
syrametric mode as an antenna, LEE-LERE, Proceedings, India,
1977, 15 (3), 195.

Modal and radiation characteristics of the diclectric sphere excrted
in TM symmeiric mode, Jour. lud. Ipst. Sc., 1977, 59 (A), 419.

The condition for mode orthogonality may be stated mathematically as
F 7 0,4) g 0,4) de=0.

where f and g represent the functional variation of two modes.

For the diefectric-coated conducting sphere, comsidering any two modes, TM,, and

TM,y, where n# n', we have for the magnetic field component H,,

b
ky P ,
1=2a [T f G - ¢ G

re=a

T
[Low o (B 1) + Mo yor (oo 13] % el L Pileos 0).
=0

X Py(cos 6) sin § do.
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Using the property of Legendre polynomials that
1
J Pa(x) Pu(x) dx =0 for ns# m, we have I =0,
-1

Hence the TM,, and TM,,, modes are orthogonal. The orthogonality can be proved
similarly in the case of the E, and Ey components.

Appendix II Appendix III

Dielectric material considered for the Specifications of the truncated dielectric

thecretical study coated conducting spheres

Dlre M L i iy o
acm bem Oy, degrees

Teflon 208 0-00037 1-2 1-4 1148

Mycalex 400 7-12 00033 1-6 1-8 1351

Ceramic 28-9 0-0020 175 2:25 1456

Titanium dioxide 85-8 00020 2-8 29 154-0

Strontium. titanate 3123 0-0008 3-0 3-25 156:9

Barfum titanate 700-0 0-0005 3-3 36 159-3




