Selective Review of Proton Magnetic Resonance Spectroscopy in Schizophrenia
Abstract
Full Text:
PDFReferences
Rao, N.P., G. Venkatasubramanian, and B.N. Gangadhar,
‘Proton magnetic resonance spectroscopy in depression’.
Indian J Psychiatry, 2011. 53(4): p. 307–11.
Jablensky, A., ‘Schizophrenia: Recent epidemiologic
issues’. Epidemiol Rev, 1995. 17(1): p. 10–20.
WHO, The WHO world health report 2001—Mental
Health: New Understanding, New Hope. 2001: Geneva.
van Os, J. and S. Kapur, ‘Schizophrenia’. Lancet, 2009.
(9690): p. 635–45.
Carlsson, A. and M. Lindqvist, ‘Effect of chlorpromazine
or haloperidol on formation of 3-methoxytyramine and
normetanephrine in mouse brain’. Acta Pharmacol Toxicol
(Copenh), 1963. 20: p. 140–4.
Creese, I., D.R. Burt, and S.H. Snyder, ‘Dopamine receptor
binding predicts clinical and pharmacological potencies
of antischizophrenic drugs’. Science, 1976. 192(4238):
p. 481–3.
Seeman, P. and T. Lee, ‘Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on
dopamine neurons’. Science, 1975. 188(4194): p. 1217–9.
Seeman, P., et al., ‘Antipsychotic drug doses and neuroleptic/ dopamine receptors’. Nature, 1976. 261(5562):
p. 717–9.
Lieberman, J.A., J.M. Kane, and J. Alvir, ‘Provocative tests
with psychostimulant drugs in schizophrenia’. Psychopharmacology (Berl), 1987. 91(4): p. 415–33.
Carlsson, A., ‘Does dopamine play a role in schizophrenia?’ Psychol Med, 1977. 7(4): p. 583–97.
Carlsson, A., ‘Antipsychotic drugs, neurotransmitters, and
schizophrenia’. Am J Psychiatry, 1978. 135(2): p. 165–73.
Snyder, S.H., ‘The dopamine hypothesis of schizophrenia:
Focus on the dopamine receptor’. Am J Psychiatry, 1976.
(2): p. 197–202.
Davis, K.L., et al., ‘Dopamine in schizophrenia: A review
and reconceptualization’. Am J Psychiatry, 1991. 148(11):
p. 1474–86.
Pycock, C.J., R.W. Kerwin, and C.J. Carter, ‘Effect of lesion of cortical dopamine terminals on subcortical dopamine
receptors in rats’. Nature, 1980. 286(5768): p. 74–6.
Kling, A.S., et al., ‘Comparison of PET measurement of
local brain glucose metabolism and CAT measurement of
brain atrophy in chronic schizophrenia and depression’.
Am J Psychiatry, 1986. 143(2): p. 175–80.
Wolkin, A., et al., ‘Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography’. Am J Psychiatry, 1985. 142(5): p. 564–71.
Howes, O.D. and S. Kapur, ‘The dopamine hypothesis of
schizophrenia: Version III—The final common pathway’.
Schizophr Bull, 2009. 35(3): p. 549–62.
Moore, G.J. and M.P. Galloway, ‘Magnetic resonance
spectroscopy: neurochemistry and treatment effects in
affective disorders’. Psychopharmacol Bull, 2002. 36(2):
p. 5–23.
Stanley, J.A., ‘In vivo magnetic resonance spectroscopy
and its application to neuropsychiatric disorders’.
Can J Psychiatry, 2002. 47(4): p. 315–26.
Tsai, G. and J.T. Coyle, ‘N-acetylaspartate in neuropsychiatric disorders’. Prog Neurobiol, 1995. 46(5): p. 531–40.
Kraguljac, N.V., et al., ‘Neurometabolites in schizophrenia
and bipolar disorder—A systematic review and metaanalysis’.
Psychiatry Res, 2012. 203(2–3): p. 111–25.
Steen, R.G., R.M. Hamer, and J.A. Lieberman, ‘Measurement of brain metabolites by 1H magnetic resonance
spectroscopy in patients with schizophrenia: A systematic
review and meta-analysis’. Neuropsychopharmacology,
30(11): p. 1949–62.
Krystal, J.H., et al., ‘Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.
Psychotomimetic, perceptual, cognitive, and neuroendocrine
responses’. Arch Gen Psychiatry, 1994. 51(3):
p. 199–214.
Olney, J.W. and N.B. Farber, ‘Glutamate receptor dysfunction and schizophrenia’. Arch Gen Psychiatry, 1995.
(12): p. 998–1007.
Moghaddam, B., et al., ‘Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway
from NMDA receptor blockade to dopaminergic and cognitive
disruptions associated with the prefrontal cortex’.
J. Neurosci, 1997. 17(8): p. 2921–7.
Kaiser, L.G., et al., ‘Age-related glutamate and glutamine
concentration changes in normal human brain: 1H MR
spectroscopy study at 4 T’. Neurobiol Aging, 2005. 26(5):
p. 665–72.
Marsman, A., et al., ‘Glutamate in schizophrenia: A
focused review and meta-analysis of (1)H-MRS studies’.
Schizophr Bull, 2013. 39(1): p. 120–9.
Kusumakar, V., et al., ‘Left medial temporal cytosolic
choline in early onset depression’. Can J Psychiatry, 2001.
(10): p. 959–64.
Glitz, D.A., H.K. Manji, and G.J. Moore, ‘Mood disorders:
Treatment-induced changes in brain neurochemistry
and structure’. Semin Clin Neuropsychiatry, 2002. 7(4):
p. 269–80.
Ende, G., et al., ‘The hippocampus in patients treated with
electroconvulsive therapy: A proton magnetic resonance
spectroscopic imaging study’. Arch Gen Psychiatry, 2000.
(10): p. 937–43.
Bustillo, J.R., et al., ‘Longitudinal follow-up of neurochemical changes during the first year of antipsychotic
treatment in schizophrenia patients with minimal previous
medication exposure’. Schizophr Res, 2002. 58(2–3):
p. 313–21.
Bustillo, J.R., et al., ‘Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia’. Neuropsychopharmacology, 2008. 33(10): p. 2456–66.
Bustillo, J.R., et al., ‘High choline concentrations in the
caudate nucleus in antipsychotic-naive patients with
schizophrenia’. Am J Psychiatry, 2002. 159(1): p. 130–3.
Maier, M. and M.A. Ron, ‘Hippocampal age-related
changes in schizophrenia: A proton magnetic resonance
spectroscopy study’. Schizophr Res, 1996. 22(1):
p. 5–17.
Ohrmann, P., et al., ‘Learning potential on the WCST in
schizophrenia is related to the neuronal integrity of the
anterior cingulate cortex as measured by proton magnetic
resonance spectroscopy’. Schizophr Res, 2008. 106(2–3):
p. 156–63.
Rusch, N., et al., ‘Neurochemical and structural correlates
of executive dysfunction in schizophrenia’. Schizophr Res,
99(1–3): p. 155–63.
Tayoshi, S., et al., ‘GABA concentration in schizophrenia
patients and the effects of antipsychotic medication:
A proton magnetic resonance spectroscopy study’. Schizophr
Res, 2011. 117(1): p. 83–91.
Ongur, D., et al., ‘Elevated gamma-aminobutyric acid levels in chronic schizophrenia’. Biol Psychiatry, 2010. 68(7):
p. 667–70.
Goto, N., et al., ‘Reduction of brain gamma-aminobutyric
acid (GABA) concentrations in early-stage schizophrenia
patients: 3T Proton MRS study’. Schizophr Res, 2009.
(1–3): p. 192–3.
Frey, R., et al., ‘Myo-inositol in depressive and healthy
subjects determined by frontal 1H-magnetic resonance
spectroscopy at 1.5 Tesla’. J Psychiatr Res, 1998. 32(6):
p. 411–20.
Kim, H., B.M. McGrath, and P.H. Silverstone, ‘A review of
the possible relevance of inositol and the phosphatidylinositol
second messenger system (PI-cycle) to psychiatric
disorders—Focus on magnetic resonance spectroscopy
(MRS) studies’. Hum Psychopharmacol, 2005. 20(5):
p. 309–26.
Deicken, R.F., C. Johnson, and M. Pegues, ‘Proton magnetic resonance spectroscopy of the human brain in schizophrenia’. Rev Neurosci, 2000. 11(2–3): p. 147–58.
Brugger, S., et al., ‘Proton magnetic resonance spectroscopy and illness stage in schizophrenia—A systematic
review and meta-analysis’. Biol Psychiatry, 2011. 69(5):
p. 495–503.
Theberge, J., et al., ‘Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia’. Br J Psychiatry, 2007. 191: p. 325–34.
Choe, B.Y., et al., ‘Observation of metabolic changes in
chronic schizophrenia after neuroleptic treatment by in
vivo hydrogen magnetic resonance spectroscopy’. Invest
Radiol, 1996. 31(6): p. 345–52.
Szulc, A., et al., ‘Proton magnetic resonance spectroscopy
study of brain metabolite changes after antipsychotic
treatment’. Pharmacopsychiatry, 2011. 44(4): p. 148–57.
de la Fuente-Sandoval, C., et al., ‘Glutamate levels in the
associative striatum before and after 4 weeks of antipsychotic
treatment in first-episode psychosis: A longitudinal
proton magnetic resonance spectroscopy study’. JAMA
Psychiatry, 2013. 70(10): p. 1057–66.
Bertolino, A., et al., ‘The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in
patients with schizophrenia’. Biol Psychiatry, 2001. 49(1):
p. 39–46.
Fannon, D., et al., ‘Selective deficit of hippocampal
N-acetylaspartate in antipsychotic-naive patients with
schizophrenia’. Biol Psychiatry, 2003. 54(6): p. 587–98.
Lindquist, D.M., et al., ‘Effects of antipsychotic drugs on
metabolite ratios in rat brain in vivo’. Magn Reson Med,
43(3): p. 355–8.
Bustillo, J., et al., ‘Treatment of rats with antipsychotic
drugs: Lack of an effect on brain N-acetyl aspartate levels’.
Schizophr Res, 2004. 66(1): p. 31–9.
Bustillo, J., et al., ‘Long-term treatment of rats with
haloperidol: Lack of an effect on brain N-acetyl aspartate
levels’. Neuropsychopharmacology, 2006. 31(4):
p. 751–6.
Goto, N., et al., ‘Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate
plus glutamine in early-stage first-episode schizophrenia’.
Neuropsychiatr Dis Treat, 2012. 8: p. 119–22.
Ongur, D., ‘Making progress with magnetic resonance
spectroscopy’. JAMA Psychiatry, 2013. 70(12): p. 1265–6.
Refbacks
- There are currently no refbacks.