Noise Detected NMR Spectroscopy
Abstract
Full Text:
PDFReferences
Bloch, F., Nuclear Induction. Physical Review, 1946.
(7–8): p. 460–474.
Hoult, D.I. and B. Bhakar, NMR signal reception: Virtual
photons and coherent spontaneous emission. Concepts in
Magnetic Resonance, 1997. 9(5): p. 277–297.
Sleator, T., et al., Nuclear-Spin Noise. Physical Review Letters, 1985. 55(17): p. 1742–1745.
Sleator, T., et al., Nuclear-Spin Noise and Spontaneous
Emission. Physical Review B, 1987. 36(4):
p. 1969–1980.
McCoy, M.A. and R.R. Ernst, Nuclear-Spin Noise at Room-
Temperature. Chemical Physics Letters, 1989. 159(5–6):
p. 587–593.
Gueron, M. and J.L. Leroy, Nmr of Water Protons—the
Detection of Their Nuclear-Spin Noise, and a Simple Determination of Absolute Probe Sensitivity Based on Radiation Damping. Journal of Magnetic Resonance, 1989. 85(1): p. 209–215.
Hoult, D.I. and N.S. Ginsberg, The quantum origins of the
free induction decay signal and spin noise. Journal of Magnetic
Resonance, 2001. 148(1): p. 182–199.
Bloembergen, N. and R.V. Pound, Radiation Damping in
Magnetic Resonance Experiments. Physical Review, 1954.
(1): p. 8–12.
C.W. Helstrom, Probability and Stochastic Processes for
Engineers. Maxwell–Macmillan, New York, 2nd ed., 1991.
Bruland, K.J., et al., Force-detected magnetic resonance in
a field gradient of 250 000 Tesla per meter. Applied Physics
Letters, 1998. 73(21): p. 3159–3161.
Leskowitz, G.M., L.A. Madsen, and D.P. Weitekamp,
Force-detected magnetic resonance without field gradients.
Solid State Nuclear Magnetic Resonance, 1998. 11(1–2):
p. 73–86.
Mamin, H.J., et al., Magnetic resonance force microscopy
of nuclear spins: Detection and manipulation of statistical
polarization. Physical Review B, 2005. 72(2).
Rugar, D., C.S. Yannoni, and J.A. Sidles, Mechanical detection of magnetic-resonance. Nature, 1992. 360(6404):
p. 563–566.
Rugar, D., et al., Force detection of nuclear-magnetic-
resonance. Science, 1994. 264(5165): p. 1560–1563.
Chao, S.H., et al., Nanometer-scale magnetic resonance
imaging. Review of Scientific Instruments, 2004. 75(5):
p. 1175–1181.
Durkan, C. and M.E. Welland, Electronic spin detection
in molecules using scanning-tunneling-microscopy-assisted
electron-spin resonance. Applied Physics Letters, 2002.
(3): p. 458–460.
Lee, S.C., et al., One micrometer resolution NMR microscopy. Journal of Magnetic Resonance, 2001. 150(2):
p. 207–213.
Mamin, H.J., et al., Isotope-Selective Detection and Imaging of Organic Nanolayers. Nano Letters, 2009. 9(8):
p. 3020–3024.
Nestle, N., A. Schaff, and W.S. Veeman, Mechanically
detected NMR, an evaluation of the applicability for chemical
investigations. Progress in Nuclear Magnetic Resonance
Spectroscopy, 2001. 38(1): p. 1–35.
Elzerman, J.M., et al., Single-shot read-out of an individual
electron spin in a quantum dot. Nature, 2004. 430(6998):
p. 431–435.
Mamin, H.J., et al., Nuclear magnetic resonance imaging
with 90-nm resolution. Nature Nanotechnology, 2007.
(5): p. 301–306.
Rugar, D., et al., Single spin detection by magnetic
resonance force microscopy. Nature, 2004. 430(6997):
p. 329–332.
Balasubramanian, G., et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008. 455(7213): p. 648–651.
Balasubramanian, G., et al., Ultralong spin coherence time
in isotopically engineered diamond. Nature Materials, 2009.
(5): p. 383–387.
Taylor, J.M., et al., High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 2008. 4(10): p. 810–816.
Maletinsky, P., et al., A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres.
Nat. Nanotechnol., 2012. 7(5): p. 320–324.
Zhao, N., et al., Sensing single remote nuclear spins. Nat.
Nanotechnol., 2012. 7(10): p. 657–662.
Kolkowitz, S., et al., Sensing distant nuclear spins with a
single electron spin. Phys Rev Lett, 2012. 109(13): p. 25.
Kolkowitz, S., et al., Sensing Distant Nuclear Spins with
a Single Electron Spin. Physical Review Letters, 2012.
(13): p. 137601.
Taminiau, T.H., et al., Detection and Control of Individual
Nuclear Spins Using a Weakly Coupled Electron Spin.
Physical Review Letters, 2012. 109(13): p. 137602.
Staudacher, T., et al., Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume. Science, 2013. 339(6119): p. 561–563.
Crooker, S.A., et al., Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance. Nature, 2004. 431(7004): p. 49–52.
Muller, N. and A. Jerschow, Nuclear spin noise imaging.
Proceedings of the National Academy of Sciences of the
United States of America, 2006. 103(18): p. 6790–6792.
Styles, P., et al., A High-Resolution Nmr Probe in Which
the Coil and Preamplifier Are Cooled with Liquid-Helium.
Journal of Magnetic Resonance, 1984. 60(3): p. 397–404.
Kovacs, H., D. Moskau, and M. Spraul, Cryogenically
cooled probes—a leap in NMR technology. Progress in
Nuclear Magnetic Resonance Spectroscopy, 2005. 46(2–3):
p. 131–155.
Bottomley, P.A. and W.A. Edelstein, Power Deposition in
Whole-Body Nmr Imaging. Medical Physics, 1981. 8(4):
p. 510–512.
Kangarlu, A., F.G. Shellock, and D.W. Chakeres, 8.0-Tesla
Human MR system: Temperature changes associated with
radiofrequency-induced heating of a head phantom. Journal
of Magnetic Resonance Imaging, 2003. 17(2): p. 220–226.
Shellock, F.G. and J.V. Crues, MR procedures: Biologic
effects, safety, and patient care. Radiology, 2004. 232(3):
p. 635–652.
U.S. Department of Health and Human Services, F.a.D.A.
and C.f.D.a.R. Health, Guidance for Industry and FDA Staff
(Food Drug Admin., Rockville, MD). 2003.
A. Abragam, Principles of Nuclear Magnetism. Clarendon,
Oxford, 1961.
Webb, A.G., Radiofrequency microcoils in magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 1997. 31: p. 1–42.
Nausner, M., et al., Non-linearity and frequency shifts of
nuclear magnetic spin-noise. Journal of Magnetic Resonance,
198(1): p. 73–79.
Desvaux, H., et al., Nuclear Spin-Noise Spectra of Hyperpolarized Systems. Angewandte Chemie-International
Edition, 2009. 48(24): p. 4341–4343.
Nausner, M., et al., Signal enhancement in protein NMR
using the spin-noise tuning optimum. Journal of Biomolecular
Nmr. 48(3): p. 157–167.
Horiuchi, T., et al., Effect of dielectric properties of solvents on the quality factor for a beyond 900 MHz cryogenic probe model. Journal of Magnetic Resonance, 2005. 174(1):
p. 34–42.
Kelly, A.E., et al., Low-conductivity buffers for high-
sensitivity NMR measurements. Journal of the American
Chemical Society, 2002. 124(40): p. 12013–12019.
Gadian, D.G. and F.N.H. Robinson, Radiofrequency Losses
in Nmr Experiments on Electrically Conducting Samples.
Journal of Magnetic Resonance, 1979. 34(2): p. 449–455.
Giraudeau, P., et al., H-1 NMR noise measurements in
hyperpolarized liquid samples. Chemical Physics Letters.
(1–3): p. 107–112.
Rossini, A.J., H. Hamaed, and R.W. Schurko, The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra. Journal of Magnetic Resonance. 206(1): p. 32–40.
Levin, E.M., et al., Magnetization and C-13 NMR spinlattice
relaxation of nanodiamond powder. Physical Review
B, 2008. 77(5).
Schlagnitweit, J. and N. Muller, The first observation of
Carbon-13 spin noise spectra. J Magn Reson, 2012. 224: p.
–81.
Chandra, K., et al., Spin-Noise-Detected Two-Dimensional
Fourier-Transform NMR Spectroscopy. J Phys Chem Lett,
4(22): p. 3853–3856.
Madsen, L.A., G.M. Leskowitz, and D.P. Weitekamp,
Observation of force-detected nuclear magnetic resonance in
a homogeneous field. Proceedings of the National Academy
of Sciences of the United States of America, 2004. 101(35):
p. 12804–12808.
Refbacks
- There are currently no refbacks.