Nanomaterial based Magnetic Resonance Imaging of Cancer
Abstract
Full Text:
PDFReferences
Cancer statistics: Data comparing more and less developed countries [http://www.wcrf.org/cancer_statistics/
developed_countries_cancer_statistics.php]
Bardhan R, Lal S, Joshi A, Halas NJ: Theranostic
nanoshells: From probe design to imaging and treatment
of cancer. Accounts of Chemical Research 2011,
(10):936–946.
Mukherjee A, Prasad TK, Rao NM, Banerjee R: Haloperidolassociated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. The Journal of Biological Chemistry 2005, 280(16):15619–15627.
Taverna G, Grizzi F, Colombo P, Graziotti P: Is Angiogenesis A Hallmark Of Prostate Cancer? Frontiers in
Oncology 2013, 3.
Friedl P, Alexander S: Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011,
(5):992–1009.
Hanahan D, Weinberg RA: Hallmarks of cancer: The next generation. Cell 2011, 144(5):646–674.
Benaron DA: The future of cancer imaging. Cancer
metastasis reviews 2002, 21(1):45–78.
Hood JD, Cheresh DA: Role of integrins in cell invasion
and migration. Nature Reviews Cancer 2002, 2(2):91–100.
Cai W, Chen X: Multimodality molecular imaging of
tumor angiogenesis. Journal of nuclear medicine: Official
publication, Society of Nuclear Medicine 2008, 49 Suppl
:113S–128S.
Cai W, Niu G, Chen X: Imaging of integrins as biomarkers for tumor angiogenesis. Current Pharmaceutical Design 2008, 14(28):2943–2973.
Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH,
Lim SM, Park S, Song R: RGD peptide-conjugated
multimodal NaGdF4:Yb3+/Er3+ nanophosphors for
upconversion luminescence, MR, and PET imaging
of tumor angiogenesis. Journal of nuclear medicine:
Official publication, Society of Nuclear Medicine 2013,
(1):96–103.
Prager GW, Poettler M: Angiogenesis in cancer: Basic
mechanisms and therapeutic advances. Hamostaseologie 2012, 32(2):105–114.
Choi KY, Liu G, Lee S, Chen X: Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale 2012, 4(2):330–342.
Alivisatos P: The use of nanocrystals in biological detection. Nature biotechnology 2004, 22(1):47–52.
Bae KH, Chung HJ, Park TG: Nanomaterials for
cancer therapy and imaging. Molecules and Cells 2011,
(4):295–302.
Contag CH: In vivo pathology: seeing with molecular
specificity and cellular resolution in the living body.
Annual Review of Pathology 2007, 2:277–305.
Kim HL: Optical imaging in oncology. Urologic Oncology 2009, 27(3):298–300.
Deshpande N, Pysz MA, Willmann JK: Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis 2010, 13(2):175–188.
Mathews JD, Forsythe AV, Brady Z, Butler MW,
Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson
PR, Guiver TA et al: Cancer risk in 680,000 people
exposed to computed tomography scans in childhood
or adolescence: Data linkage study of 11 million Australians. BMJ (Clinical research ed.) 2013, 346:f2360.
Leung D, Krishnamoorthy S, Schwartz L, Divgi C: Imaging approaches with advanced prostate cancer: Techniques and timing. The Canadian Journal of Urology 2014, 21(2 Supp 1):42–47.
Townsend DW, Beyer T, Blodgett TM: PET/CT scanners: A hardware approach to image fusion. Seminars in Nuclear Medicine 2003, 33(3):193–204.
Massoud TF, Gambhir SS: Molecular imaging in living
subjects: seeing fundamental biological processes in a
new light. Genes & development 2003, 17(5):545–580.
Brenner DJ, Hall EJ: Computed tomography—An
increasing source of radiation exposure. The New
England Journal of Medicine 2007, 357(22):2277–2284.
Logothetis NK: What we can do and what we cannot do with fMRI. Nature 2008, 453(7197):869–878.
Artemov D, Bhujwalla ZM, Bulte JW: Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Current Pharmaceutical Biotechnology 2004, 5(6):485–494.
Blamire AM: The technology of MRI—The next 10 years? The British Journal of Radiology 2008, 81(968):601–617.
Delikatny EJ, Poptani H: MR techniques for in vivo
molecular and cellular imaging. Radiologic Clinics of
North America 2005, 43(1):205–220.
Xu W, Kattel K, Park JY, Chang Y, Kim TJ, Lee GH:
Paramagnetic nanoparticle T1 and T2 MRI contrast
agents. Physical Chemistry Chemical Physics: PCCP 2012, 14(37):12687–12700.
Kobayashi H, Longmire MR, Ogawa M, Choyke PL:
Rational chemical design of the next generation of
molecular imaging probes based on physics and biology:
mixing modalities, colors and signals. Chemical
Society Reviews 2011, 40(9):4626–4648.
Berry E, Bulpitt, AJ., Berry, E1., and Berry, L.: Fundamentals of MRI: An interactive learning approach. FL, USA: CRC Press; 2009.
Edelman RR HJ, Zlatkin, M, eds.: Clinical Magnetic Resonance Imaging, 2nd edn. Philadelphia: Saunders Publishing Co; 1996.
Bae KH, Kim YB, Lee Y, Hwang J, Park H, Park TG:
Bioinspired Synthesis and Characterization of Gadolinium- Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging. Bioconjugate Chemistry 2010, 21(3):505–512.
Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, Nievelstein RA, Luijten PR: Whole-body diffusion-weighted magnetic resonance imaging. European journal of radiology 2009, 70(3):409–417.
Xing Y, Zhao J, Conti PS, Chen K: Radiolabeled
nanoparticles for multimodality tumor imaging.
Theranostics 2014, 4(3):290–306.
Louie A: Multimodality Imaging Probes: Design and
Challenges. Chemical Reviews 2010, 110(5):3146–3195.
Terreno E, Castelli DD, Viale A, Aime S: Challenges for molecular magnetic resonance imaging. Chem Rev 2010, 110(5):3019–3042.
Weissleder R: Molecular imaging in cancer. Science
(New York, NY) 2006, 312(5777):1168–1171.
De M, Chou SS, Joshi HM, Dravid VP: Hybrid magnetic
nanostructures (MNS) for magnetic resonance imaging
applications. Advanced Drug Delivery Reviews 2011,
(14–15):1282–1299.
Callan DE, Jones JA, Callan A: Multisensory and
modality specific processing of visual speech in different
regions of the premotor cortex. Frontiers in psychology
, 5:389.
Lee G, I H, Kim SJ, Jeong YJ, Kim IJ, Pak K, Park DY, Kim GH: Clinical Implication of PET/MR Imaging in Preoperative Esophageal Cancer Staging: Comparison with PET/CT, Endoscopic Ultrasonography, and CT. Journal of nuclear medicine: Official Publication, Society of Nuclear Medicine 2014.
Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X: PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31(11):3016–3022.
Mozafari MR: Nanomaterials and Nanosystems for Biomedical Applications: Springer Netherlands; 2007.
Mo A, Liao J, Xu W, Xian S, Li Y, Bai S: Preparation and antibacterial effect of silver–hydroxyapatite/titania
nanocomposite thin film on titanium. Applied Surface
Science 2008, 255(2):435–438.
Yang F-C, Wu K-H, Liu M-J, Lin W-P, Hu M-K: Evaluation of the antibacterial efficacy of bamboo charcoal/ silver biological protective material. Materials Chemistry and Physics 2009, 113(1):474–479.
Kim M, Byun JW, Shin DS, Lee YS: Spontaneous
formation of silver nanoparticles on polymeric supports.
Mater Res Bull 2009, 44(2):334–338.
Petros RA, DeSimone JM: Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug
Discov 2010, 9(8):615–627.
Ferrari M: Nanovector therapeutics. Current Opinion in Chemical Biology 2005, 9(4):343–346.
Wong SY, Han L, Timachova K, Veselinovic J, Hyder
MN, Ortiz C, Klibanov AM, Hammond PT: Drastically
lowered protein adsorption on microbicidal hydrophobic/
hydrophilic polyelectrolyte multilayers. Biomacromolecules 2012, 13(3):719–726.
Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L: Nanomaterials: applications in cancer imaging and therapy. Advanced Materials (Deerfield Beach, Fla) 2011, 23(12):H18–40.
Rozhkova EA: Nanoscale materials for tackling brain
cancer: Recent progress and outlook. Advanced materials (Deerfield Beach, Fla) 2011, 23(24):H136–150.
Minelli C, Lowe SB, Stevens MM: Engineering nanocomposite materials for cancer therapy. Small (Weinheim an der Bergstrasse, Germany) 2010, 6(21):2336–2357.
Weissleder R, Pittet MJ: Imaging in the era of molecular oncology. Nature 2008, 452(7187):580–589.
Brindle K: New approaches for imaging tumour
responses to treatment. Nature reviews Cancer 2008,
(2):94–107.
Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7(9):771–782.
Cho K, Wang X, Nie S, Chen ZG, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research: An Official Journal of the American Association for Cancer Research 2008, 14(5):1310–1316.
Kim KY: Nanotechnology platforms and physiological
challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3(2):103–110.
Sahoo SK, Labhasetwar V: Nanotech approaches to
drug delivery and imaging. Drug discovery today 2003,
(24):1112–1120.
Faraji AH, Wipf P: Nanoparticles in cellular drug
delivery. Bioorganic & Medicinal Chemistry 2009,
(8):2950–2962.
Haley B, Frenkel E: Nanoparticles for drug delivery in
cancer treatment. Urologic Oncology 2008, 26(1):57–64.
Rosenholm JM, Sahlgren C, Linden M: Towards multifunctional, targeted drug delivery systems using
mesoporous silica nanoparticles—Opportunities &
Challenges. Nanoscale 2010, 2(10):1870–1883.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS,
Farokhzad OC: Nanoparticles in medicine: Therapeutic
Applications and Developments. Clinical Pharmacology
and Therapeutics 2008, 83(5):761–769.
Josephson L, Groman EV, Menz E, Lewis JM, Bengele H: A functionalized superparamagnetic iron oxide colloid
as a receptor directed MR contrast agent. Magnetic Resonance Imaging 1990, 8(5):637–646.
Barenholz Y: Doxil(R)—The first FDA-approved nanodrug: Lessons learned. Journal of Controlled Release: Official Journal of the Controlled Release Society 2012, 160(2):117–134.
O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E,
Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP
et al: Reduced cardiotoxicity and comparable efficacy in
a phase III trial of pegylated liposomal doxorubicin HCl
(CAELYX/Doxil) versus conventional doxorubicin for
first-line treatment of metastatic breast cancer. Annals
of oncology: Official Journal of the European Society for
Medical Oncology / ESMO 2004, 15(3):440–449.
Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PC,
Wong NS, Chowbay B: Phase I pharmacokinetic study of
a weekly liposomal paclitaxel formulation (Genexol-PM)
in patients with solid tumors. Annals of Oncology: Official
Journal of the European Society for Medical Oncology/
ESMO 2010, 21(2):382–388.
Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW,
Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD,
Lanza GM et al: Molecular imaging of angiogenesis in
early-stage atherosclerosis with alpha(v)beta3-integrintargeted nanoparticles. Circulation 2003, 108(18): 2270–2274.
Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A: Evidence of RNAi in
humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464(7291):1067–1070.
J.F: Reinventing pharma: The theranostic revolution.
Current Drug Discovery 2002, 2:17–19.
Gao X, Cui Y, Levenson RM, Chung LW, Nie S: In vivo
cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 2004, 22(8):969–976.
Banerjee SS, Chen DH: Multifunctional pH-sensitive
magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008, 19(50):505104.
Agasti SS, Chompoosor A, You C-C, Ghosh P, Kim CK,
Rotello VM: Photoregulated Release of Caged Anticancer
Drugs from Gold Nanoparticles. Journal of the American
Chemical Society 2009, 131(16):5728–5729.
Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y,
Qu H, Wang Z, Li Y et al: Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for
pH-responsive MRI, ultrasonography and circumvention
of MDR in cancer cells. Biomaterials 2012, 33(29):7126–7137.
Gomes RS, das Neves RP, Cochlin L, Lima A, Carvalho R, Korpisalo P, Dragneva G, Turunen M, Liimatainen T,
Clarke K et al: Efficient pro-survival/angiogenic miRNA
delivery by an MRI-detectable nanomaterial. ACS nano
, 7(4):3362–3372.
Tian G, Yin W, Jin J, Zhang X, Xing G, Li S, Gu Z, Zhao
Y: Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/
magnetic resonance/X-ray computed tomography
imaging and targeted delivery of combined anticancer
drugs. Journal of Materials Chemistry B 2014, 2(10):1379.
Dobrovolskaia MA, McNeil SE: Immunological properties of engineered nanomaterials. Nat Nano 2007,
(8):469–478.
Rivera Gil P, Huhn D, del Mercato LL, Sasse D, Parak WJ: Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacological research: The Official Journal of the Italian Pharmacological Society 2010, 62(2):115–125.
Wang YX, Hussain SM, Krestin GP: Superparamagnetic iron oxide contrast agents: physicochemical characteristics
and applications in MR imaging. European radiology
, 11(11):2319–2331.
Etheridge ML, Campbell SA, Erdman AG, Haynes CL,
Wolf SM, McCullough J: The big picture on nanomedicine:
the state of investigational and approved nanomedicine
products. Nanomedicine: Nanotechnology, Biology,
and Medicine 2013, 9(1):1–14.
Ma X, Zhao Y, Liang XJ: Theranostic nanoparticles
engineered for clinic and pharmaceutics. Accounts of
Chemical Research 2011, 44(10):1114–1122.
Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA:
Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology, and Medicine 2008, 4(4):273–282.
Sinha R, Kim GJ, Nie S, Shin DM: Nanotechnology
in cancer therapeutics: Bioconjugated nanoparticles
for drug delivery. Molecular Cancer Therapeutics 2006,
(8):1909–1917.
Zamboni WC: Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clinical cancer research: An Official Journal of the American Association for Cancer Research 2005, 11(23):8230–8234.
Zamboni WC: Concept and clinical evaluation of
carrier-mediated anticancer agents. The oncologist 2008,
(3):248–260.
Slingerland M, Guchelaar HJ, Gelderblom H: Liposomal drug formulations in cancer therapy: 15 years along the road. Drug discovery today 2012, 17(3–4):160–166.
Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T et al: Antitumor activity of small interfering RNA/
cationic liposome complex in mouse models of cancer.
Clinical cancer research: An Official Journal of the American Association for Cancer Research 2004, 10(22):7721–7726.
Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, Dewhirst MW: In vivo monitoring
of tissue pharmacokinetics of liposome/drug using
MRI: illustration of targeted delivery. Magnetic resonance
in medicine: official journal of the Society of Magnetic
Resonance in Medicine/Society of Magnetic Resonance in
Medicine 2004, 51(6):1153–1162.
Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B, Biointerfaces 2010, 75(1):1–18.
Wang X, Wang Y, Chen ZG, Shin DM: Advances of cancer therapy by nanotechnology. Cancer research and treatment: Official Journal of Korean Cancer Association 2009, 41(1):1–11.
Cegnar M, Kristl J, Kos J: Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opinion on Biological Therapy 2005, 5(12):1557–1569.
Li X, Zhao Q, Qiu L: Smart ligand: Aptamer-mediated
targeted delivery of chemotherapeutic drugs and siRNA
for cancer therapy. Journal of Controlled Release 2013,
(2):152–162.
Guthi JS, Yang SG, Huang G, Li S, Khemtong C,
Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J:
MRI-visible micellar nanomedicine for targeted drug
delivery to lung cancer cells. Molecular Pharmaceutics
, 7(1):32–40.
Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J: Multifunctional polymeric micelles as cancer-targeted, MRIultrasensitive drug delivery systems. Nano letters 2006, 6(11):2427–2430.
Lee CM, Jeong HJ, Cheong SJ, Kim EM, Kim DW,
Lim ST, Sohn MH: Prostate cancer-targeted imaging
using magnetofluorescent polymeric nanoparticles
functionalized with bombesin. Pharmaceutical research
, 27(4):712–721.
Rowe MD, Thamm DH, Kraft SL, Boyes SG: Polymermodified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 2009, 10(4):983–993.
Rowe MD, Chang CC, Thamm DH, Kraft SL,
Harmon JF, Jr., Vogt AP, Sumerlin BS, Boyes SG: Tuning
the magnetic resonance imaging properties of positive
contrast agent nanoparticles by surface modification
with RAFT polymers. Langmuir: The ACS Journal of
Surfaces and Colloids 2009, 25(16):9487–9499.
Liu Y, Feng L, Liu T, Zhang L, Yao Y, Yu D, Wang L,
Zhang N: Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 2014, 6(6):3231–3242.
G.R. Newkome, C. N. Moorefield, F. Vögtle. In: Dendrimers and Dendrons: Concepts, Syntheses, Applications. edn.: Wiley-VCH Verlag GmbH & Co. KGaA; 2004.
Hourani R, Kakkar A: Advances in the elegance of
chemistry in designing dendrimers. Macromolecular
Rapid Communications 2010, 31(11):947–974.
Ballauff M, Likos CN: Dendrimers in solution: insight
from theory and simulation. Angewandte Chemie
(International ed in English) 2004, 43(23):2998–3020.
Percec V, Wilson DA, Leowanawat P, Wilson CJ,
Hughes AD, Kaucher MS, Hammer DA, Levine DH,
Kim AJ, Bates FS et al: Self-assembly of Janus dendrimers into uniform dendrimersomes and other
complex architectures. Science (New York, NY) 2010,
(5981):1009–1014.
Stiriba SE, Frey H, Haag R: Dendritic polymers in
biomedical applications: from potential to clinical
use in diagnostics and therapy. Angewandte Chemie
(International ed in English) 2002, 41(8):1329–1334.
Boas U, Heegaard PM: Dendrimers in drug research.
Chemical Society reviews 2004, 33(1):43–63.
Medina SH, El-Sayed ME: Dendrimers as carriers for
delivery of chemotherapeutic agents. Chem Rev 2009,
(7):3141–3157.
Astruc D, Boisselier E, Ornelas C: Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 2010, 110(4):1857–1959.
Menjoge AR, Kannan RM, Tomalia DA: Dendrimerbased drug and imaging conjugates: design considerations for nanomedical applications. Drug discovery today 2010, 15(5–6):171–185.
Lim J, Turkbey B, Bernardo M, Bryant LH, Garzoni M,
Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H: Gadolinium MRI Contrast Agents Based on Triazine Dendrimers: Relaxivity and In Vivo Pharmacokinetics. Bioconjugate Chemistry 2012, 23(11):2291–2299.
Kobayashi H, Brechbiel MW: Dendrimer-based macromolecular MRI contrast agents: Characteristics and
Application. Molecular Imaging 2003, 2(1):1–10.
Barth RF, Wu G, Yang W, Binns PJ, Riley KJ, Patel H, Coderre JA, Tjarks W, Bandyopadhyaya AK, Thirumamagal BT et al: Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMCC225) as a delivery agent. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine 2004, 61(5):899–903.
Nwe K, Milenic DE, Ray GL, Kim Y-S, Brechbiel MW:
Preparation of Cystamine Core Dendrimer and
Antibody–Dendrimer Conjugates for MRI Angio-graphy.
Molecular Pharmaceutics 2011, 9(3):374–381.
Walther C, Meyer K, Rennert R, Neundorf I: Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 2008,
(12):2346–2356.
Sharma P, Brown S, Walter G, Santra S, Moudgil B:
Nanoparticles for bioimaging. Advances in Colloid and
Interface Science 2006, 123–126:471–485.
Walling MA, Novak JA, Shepard JR: Quantum dots for live cell and in vivo imaging. International Journal of
Molecular Sciences 2009, 10(2):441–491.
Hild WA, Breunig M, Goepferich A: Quantum dots-nanosized probes for the exploration of cellular and intracellular targeting. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 2008, 68(2):153–168.
True LD, Gao X: Quantum dots for molecular pathology: their time has arrived. The Journal of Molecular Diagnostics: JMD 2007, 9(1):7–11.
Azzazy HM, Mansour MM, Kazmierczak SC: From
diagnostics to therapy: prospects of quantum dots.
Clinical biochemistry 2007, 40(13–14):917–927.
Mulder WJ, Castermans K, van Beijnum JR, Oude
Egbrink MG, Chin PT, Fayad ZA, Lowik CW, Kaijzel
EL, Que I, Storm G et al: Molecular imaging of
tumor angiogenesis using alphavbeta3-integrin targeted
multimodal quantum dots. Angiogenesis 2009,
(1):17–24.
Wang S, Jarrett BR, Kauzlarich SM, Louie AY: Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. Journal of the American Chemical Society 2007, 129(13):3848–3856.
Cai W, Chen K, Li ZB, Gambhir SS, Chen X: Dualfunction probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of nuclear medicine: Official Publication, Society of Nuclear Medicine 2007, 48(11):1862–1870.
Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G,
Rao J, Chen X, Wu AM, Weiss S, Gambhir SS: microPETbased biodistribution of quantum dots in living mice. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2007, 48(9):1511–1518.
Yong KT: Mn-doped near-infrared quantum dots as
multimodal targeted probes for pancreatic cancer
imaging. Nanotechnology 2009, 20(1):015102.
Kennel SJ, Woodward JD, Rondinone AJ, Wall J, Huang Y, Mirzadeh S: The fate of MAb-targeted Cd(125 m)Te/ZnS nanoparticles in vivo. Nuclear Medicine and Biology 2008, 35(4):501–514.
Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X,
Chen X: Ultrasmall near-infrared non-cadmium quantum
dots for in vivo tumor imaging. Small (Weinheim an
der Bergstrasse, Germany) 2010, 6(2):256–261.
Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. Journal of the American Chemical Society 2010, 132(6):2016–2023.
Pisanic TR, 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007, 28(16): 2572–2581.
Shubayev VI, Pisanic TR, 2nd, Jin S: Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews 2009, 61(6):467–477.
Jarrett BR, Gustafsson B, Kukis DL, Louie AY: Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 2008, 19(7):1496–1504.
Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao JK: Iridium-complex functionalized Fe3O4/SiO2 core/shell nanoparticles:
A facile three-in-one system in magnetic resonance
imaging, luminescence imaging, and photodynamic
therapy. Small (Weinheim an der Bergstrasse, Germany)
, 4(2):218–224.
Harisinghani MG, Weissleder R: Sensitive, noninvasive detection of lymph node metastases. PLoS medicine 2004, 1(3):e66.
Harisinghani MG, Barentsz J, Hahn PF, Deserno WM,
Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine 2003, 348(25):2491–2499.
Chen J, Guo Z, Wang HB, Gong M, Kong XK, Xia P,
Chen QW: Multifunctional Fe3O4@C@Ag hybrid
nanoparticles as dual modal imaging probes and nearinfrared light-responsive drug delivery platform.
Biomaterials 2013, 34(2):571–581.
Jain KK: The role of nanobiotechnology in drug
discovery. Advances in Experimental Medicine and Biology 2009, 655:37–43.
Delong RK, Reynolds CM, Malcolm Y, Schaeffer A,
Severs T, Wanekaya A: Functionalized gold nanoparticles
for the binding, stabilization, and delivery of therapeutic
DNA, RNA, and other biological macromolecules.
Nanotechnology, Science and Applications 2010, 3:53–63.
Kim CK, Ghosh P, Rotello VM: Multimodal drug
delivery using gold nanoparticles. Nanoscale 2009,
(1):61–67.
Cobley CM, Chen J, Cho EC, Wang LV, Xia Y: Gold nanostructures: A class of multifunctional materials for
biomedical applications. Chemical Society Reviews 2011,
(1):44–56.
Zrazhevskiy P, Gao X: Multifunctional Quantum Dots for Personalized Medicine. Nano today 2009, 4(5):414–428.
Biju V, Itoh T, Anas A, Sujith A, Ishikawa M: Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry 2008, 391(7): 2469–2495.
Partha R, Conyers JL: Biomedical applications of
functionalized fullerene-based nanomaterials. International Journal of Nanomedicine 2009, 4:261–275.
Sun C, Lee JS, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery
Reviews 2008, 60(11):1252–1265.
Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M: In vivo MRI detection of gliomas by chlorotoxin-conjugated super paramagnetic nanoprobes. Small (Weinheim an der Bergstrasse, Germany) 2008, 4(3):372–379.
Sadowski EA, Bennett LK, Chan MR, Wentland AL,
Garrett AL, Garrett RW, Djamali A: Nephrogenic systemic
fibrosis: Risk factors and incidence estimation. Radiology
, 243(1):148–157.
Jaganathan H, Hugar DL, Ivanisevic A: Examining MRI contrast in three-dimensional cell culture phantoms
with DNA-templated nanoparticle chains. ACS Applied
Materials & Interfaces 2011, 3(4):1282–1288.
Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S:
Antiangiogenic properties of gold nanoparticles. Clinical
cancer research: An official Journal of the American
Association for Cancer Research 2005, 11(9):3530–3534.
Bhattacharya R, Mukherjee P: Biological properties of ‘naked’ metal nanoparticles. Advanced Drug Delivery
Reviews 2008, 60(11):1289–1306.
Topete A, Alatorre-Meda M, Villar-Alvarez EM, Carregal- Romero S, Barbosa S, Parak WJ, Taboada P, Mosquera V: Polymeric-Gold Nanohybrids for Combined Imaging and Cancer Therapy. Advanced Healthcare Materials 2014.
Auzel F: Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2004, 104(1):139–173.
Shen J, Sun LD, Yan CH: Luminescent rare earth nanomaterials for bioprobe applications. Dalton transactions (Cambridge, England: 2003) 2008(42):5687–5697.
Frangioni JV: In vivo near-infrared fluorescence
imaging. Curr Opin Chem Biol 2003, 7(5):626–634.
Palmer RJ, Butenhoff JL, Stevens JB: Cytotoxicity of the rare earth metals cerium, lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary macrophage primary culture system. Environmental Research 1987, 43(1):142–156.
Zako T, Nagata H, Terada N, Utsumi A, Sakono M,
Yohda M, Ueda H, Soga K, Maeda M: Cyclic RGD
peptide-labeled upconversion nanophosphors for
tumor cell-targeted imaging. Biochemical and Biophysical
Research Communications 2009, 381(1):54–58.
Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q,
Zhou L, Peng W, Hua Y et al: Multifunctional nanoprobes
for upconversion fluorescence, MR and CT trimodal
imaging. Biomaterials 2012, 33(4):1079–1089.
Lacerda L, Bianco A, Prato M, Kostarelos K: Carbon
nanotubes as nanomedicines: From toxicology to
pharmacology. Advanced Drug Delivery Reviews 2006,
(14):1460–1470.
Kostarelos K, Bianco A, Prato M: Promises, facts and
challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotechnology 2009, 4(10):627–633.
Prato M, Kostarelos K, Bianco A: Functionalized carbon nanotubes in drug design and discovery. Accounts of Chemical Research 2008, 41(1):60–68.
Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chem Rev 2006, 106(3):1105–1136.
Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q,
Zhang Q, Knapik J, Jiang H, Grobmyer SR, Koopman B
et al: Polyhydroxy fullerenes for non-invasive cancer
imaging and therapy. Small (Weinheim an der Bergstrasse, Germany) 2010, 6(20):2236–2241.
Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J
et al: Long-term survival following a single treatment
of kidney tumors with multiwalled carbon nanotubes
and near-infrared radiation. Proceedings of the National
Academy of Sciences of the United States of America 2009, 106(31):12897–12902.
Boczkowski J, Lanone S: Potential uses of carbon
nanotubes in the medical field: How worried should
patients be? Nanomedicine (London, England) 2007,
(4):407–410.
Kaiser JP, Roesslein M, Buerki-Thurnherr T, Wick P:
Carbon nanotubes—Curse or blessing. Current Medicinal
Chemistry 2011, 18(14):2115–2128.
Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA: Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine (London, England) 2011, 6(1):143–156.
Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S: Solvothermal synthesis of cobalt ferrite
nanoparticles loaded on multiwalled carbon nanotubes
for magnetic resonance imaging and drug delivery. Acta
Biomaterialia 2011, 7(9):3496–3504.
Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R,
Liu R, Zhang Z: PEGylated fullerene/iron oxide
nanocomposites for photodynamic therapy, targeted
drug delivery and MR imaging. Biomaterials 2013,
(37):9666–9677.
Meek ST, Greathouse JA, Allendorf MD: Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Advanced Materials (Deerfield Beach, Fla) 2011, 23(2):249–267.
Taylor KM, Rieter WJ, Lin W: Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society 2008, 130(44):14358–14359.
Taylor KM, Jin A, Lin W: Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angewandte Chemie (International ed in English) 2008, 47(40):7722–7725.
Hatakeyama W, Sanchez TJ, Rowe MD, Serkova NJ,
Liberatore MW, Boyes SG: Synthesis of gadolinium
nanoscale metal-organic framework with hydrotropes:
Manipulation of particle size and magnetic resonance
imaging capability. ACS Applied Materials & Interfaces
, 3(5):1502–1510.
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C,
Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C et al:
Porous metal-organic-framework nanoscale carriers
as a potential platform for drug delivery and imaging.
Nature Materials 2010, 9(2):172–178.
Mueller U, Schubert M, Teich F, Puetter H, Schierle-
Arndt K, Pastre J: Metal-organic frameworks-prospective
industrial applications. Journal of Materials Chemistry
, 16(7):626–636.
Peters JA, Djanashvili K: Lanthanide Loaded Zeolites, Clays, and Mesoporous Silica Materials as MRI Probes. European Journal of Inorganic Chemistry 2012, 2012(12): 1961–1974.
Tsotsalas MM, Kopka K, Luppi G, Wagner S, Law MP,
Schafers M, De Cola L: Encapsulating (111)In in nanocontainers for scintigraphic imaging: Synthesis, characterization, and in vivo biodistribution. ACS nano 2010, 4(1):342–348.
Strassert CA, Otter M, Albuquerque RQ, Hone A, Vida Y, Maier B, De Cola L: Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angewandte Chemie (International ed in English) 2009, 48(42):7928–7931.
Lee CH, Cheng SH, Huang IP, Souris JS, Yang CS, Mou CY, Lo LW: Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angewandte Chemie (International ed in English) 2010, 49(44):8214–8219
Csajbok E, Banyai I, Vander Elst L, Muller RN, Zhou W, Peters JA: Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: Relationship between structure and relaxivity. Chemistry
, 11(16):4799–4807.
Warner JH, Hoshino A, Yamamoto K, Tilley RD: Watersoluble photoluminescent silicon quantum dots.
Angewandte Chemie (International ed in English) 2005,
(29):4550–4554.
Rosso-Vasic M, Spruijt E, van Lagen B, De Cola L,
Zuilhof H: Alkyl-functionalized oxide-free silicon
nanoparticles: Synthesis and optical properties.
Small (Weinheim an der Bergstrasse, Germany) 2008,
(10):1835–1841.
Wu X, Wu M, Zhao JX: Recent development of silica
nanoparticles as delivery vectors for cancer imaging
and therapy. Nanomedicine: Nanotechnology, Biology, and Medicine 2014, 10(2):297–312.
Lee JE, Lee N, Kim T, Kim J, Hyeon T: Multifunctional
Mesoporous Silica Nanocomposite Nanoparticles for
Theranostic Applications. Accounts of Chemical Research
, 44(10):893–902.
Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ: Mesoporous Silica Nanoparticle Nanocarriers:
Biofunctionality and Biocompatibility. Accounts of
Chemical Research 2013, 46(3):792–801.
Rosso-Vasic M, Spruijt E, Popovic Z, Overgaag K, van Lagen B, Grandidier B, Vanmaekelbergh D, Dominguez- Gutierrez D, De Cola L, Zuilhof H: Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. Journal of Materials Chemistry 2009, 19(33):5926–5933.
Wang Y, Huang R, Liang G, Zhang Z, Zhang P, Yu S,
Kong J: Theranostics: MRI-Visualized, Dual-Targeting,
Combined Tumor Therapy Using Magnetic Graphene-
Based Mesoporous Silica (Small 1/2014). Small
(Weinheim an der Bergstrasse, Germany) 2014, 10(1):1–1.
Patra HK, Khaliq NU, Romu T, Wiechec E, Borga M,
Turner APF, Tiwari A: MRI-Visual Order–Disorder
Micellar Nanostructures for Smart Cancer Theranostics.
Advanced Healthcare Materials 2014, 3(4):526–535.
Hall AP: The role of angiogenesis in cancer. Comparative Clinical Pathology 2005, 13(3):95–99.
Goldmann E: The Growth Of Malignant Disease
In Man And The Lower Animals. The Lancet 1907,
(4392):1236–1240.
Ide AG, Baker, N. H. & Warren, S. L: Vascularization of the Brown-Pearce rabbit epithelioma transplant as
seen in the transparent ear chamber. Am J Radiol 1939,
:891–899.
Algire GHC, H. W.: Vascular reactions of normal and
malignant tissues in vivo. I. Vascular reactions of mice
to wounds and to normal and neoplastic transplants.
J Natl Cancer Inst USA 1945, 6:73–85.
Ehrmann RLK, M: Choriocarcinoma: Transfilter stimulation of vasoproliferation in the hamster cheek pouch studied by light and electron microscopy. J Natl Cancer Inst USA 1968, 41:1329–1341.
Greenblatt MS, P: Tumor angiogenesis: Transfilter
diffusion studies in the hamster by the transparant
chamber technique. J Natl Cancer Inst USA 1968,
:111–124.
Folkman J: Tumor angiogenesis: Therapeutic implications. The New England journal of medicine 1971,
(21):1182–1186.
Gullino PM: Angiogenesis and oncogenesis. Journal of the National Cancer Institute 1978, 61(3):639–643.
Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK et al: Tumor induction of VEGF promoter activity in stromal cells. Cell
, 94(6):715–725.
Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 2000, 6(4):389–395.
Abu El-Asrar AM, Nawaz MI, De Hertogh G, Al-Kharashi AS, Van den Eynde K, Mohammad G, Geboes K: The Angiogenic Biomarker Endocan is Upregulated in
Proliferative Diabetic Retinopathy and Correlates with
Vascular Endothelial Growth Factor. Current eye research 2014:1–11.
Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Annals of surgery 1972, 175(3):409–416.
Hagedorn M, Bikfalvi A: Target molecules for antiangiogenic therapy: from basic research to clinical
trials. Critical reviews in oncology/hematology 2000,
(2):89–110.
Folkman J, Klagsbrun M: Angiogenic factors. Science
(New York, NY) 1987, 235(4787):442–447.
Rundhaug JE: Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine 2005, 9(2):267–285.
Yancopoulos GD, Davis S, Gale NW, Rudge JS,
Wiegand SJ, Holash J: Vascular-specific growth
factors and blood vessel formation. Nature 2000,
(6801):242–248.
Xue Y, Lim S, Yang Y, Wang Z, Jensen LD, Hedlund EM, Andersson P, Sasahara M, Larsson O, Galter D et al:
PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in
stromal cells. Nature Medicine 2012, 18(1):100–110.
Luque A, Carpizo DR, Iruela-Arispe ML: ADAMTS1/
METH1 Inhibits Endothelial Cell Proliferation by
Direct Binding and Sequestration of VEGF165. Journal
of Biological Chemistry 2003, 278(26):23656–23665.
Cross MJ, Claesson-Welsh L: FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences 2001, 22(4):201–207.
Morishita R, Aoki M, Hashiya N, Yamasaki K,
Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J,
Ogihara T: Therapeutic angiogenesis using hepatocyte
growth factor (HGF). Current gene therapy 2004, 4(2):
–206.
Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE: Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP- 1-induced protein (MCPIP). The Journal of Biological
Chemistry 2008, 283(21):14542–14551.
Fang S, Liu B, Sun Q, Zhao J, Qi H, Li Q: Platelet Factor 4 Inhibits IL-17/Stat3 Pathway via Upregulation of
SOCS3 Expression in Melanoma. Inflammation 2014.
ffrench-Constant C, Colognato H: Integrins: Versatile integrators of extracellular signals. Trends in cell biology 2004, 14(12):678–686.
O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994, 79(2):315–328.
Ahn JH, Lee HJ, Lee EK, Yu HK, Lee TH, Yoon Y, Kim SJ, Kim JS: Antiangiogenic kringles derived from human
plasminogen and apolipoprotein(a) inhibit fibrinolysis
through a mechanism that requires a functional lysinebinding site. Biological chemistry 2011, 392(4):347–356.
Ratel D, Mihoubi S, Beaulieu E, Durocher Y, Rivard GE, Gingras D, Beliveau R: VEGF increases the fibrinolytic
activity of endothelial cells within fibrin matrices:
Involvement of VEGFR-2, tissue type plasminogen
activator and matrix metalloproteinases. Thrombosis
Research 2007, 121(2):203–212.
Sun T, Yang Y, Luo X, Cheng Y, Zhang M, Wang K,
Ge C: Inhibition of Tumor Angiogenesis by Interferongamma by Suppression of Tumor-Associated
Macrophage Differentiation. Oncology Research 2014,
(5):227–235.
Wallez Y, Vilgrain I, Huber P: Angiogenesis: The VEcadherin switch. Trends in Cardiovascular Medicine 2006, 16(2):55–59.
SunYoung Park TAD, Elizabeth A. Scheef, Christine M. Sorenson, and Nader Sheibani: PECAM-1 regulates
proangiogenic properties of endothelial cells through
modulation of cell-cell and cell-matrix interactions.
Am J Physiol Cell Physiol 2010, 299(6): C1468–C1484.
Kim TH, Kim E, Yoon D, Kim J, Rhim TY, Kim SS:
Recombinant human prothrombin kringles have
potent anti-angiogenic activities and inhibit Lewis
lung carcinoma tumor growth and metastases.
Angiogenesis 2002, 5(3):191–201.
Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC
et al: Nitric oxide synthase modulates angiogenesis in
response to tissue ischemia. The Journal of clinical investigation 1998, 101(11):2567–2578.
Gately S, Li WW: Multiple roles of COX-2 in tumor
angiogenesis: a target for antiangiogenic therapy.
Seminars in Oncology 2004, 31(2 Suppl 7):2–11.
Shen JM, Gao FY, Yin T, Zhang HX, Ma M, Yang YJ,
Yue F: cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacological research: The Official Journal of the Italian Pharmacological Society 2013, 70(1):102–115.
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van
Oosterom AT, De Bruijn EA: Vascular endothelial growth
factor and angiogenesis. Pharmacological Reviews 2004,
(4):549–580.
Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M,
Pollard JW, Ruhrberg C: NRP1 acts cell autonomously
in endothelium to promote tip cell function during
sprouting angiogenesis. Blood 2013, 121(12):2352–2362.
Li J, Cui Y, Wang Q, Guo D, Pan X, Wang X, Bi H,
Chen W, Liu Z, Zhao S: The proliferation of malignant
melanoma cells could be inhibited by ranibizumab via
antagonizing VEGF through VEGFR1. Molecular Vision
, 20:649–660.
Ramjaun AR, Hodivala-Dilke K: The role of cell adhesion pathways in angiogenesis. The International Journal of Biochemistry & Cell Biology 2009, 41(3):521–530.
Francavilla C, Maddaluno L, Cavallaro U: The functional role of cell adhesion molecules in tumor angiogenesis. Seminars in cancer biology 2009, 19(5):298–309.
Muller JM: Potential inhibition of the neuro-neoplastic interactions: the clue of a GPCR-targeted therapy. Progress in experimental tumor research 2007, 39:130–153.
Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R: Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. European Journal of Cancer (Oxford, England: 1990) 2000, 36(5):675–681.
Dijkgraaf I, Boerman OC: Radionuclide imaging of
tumor angiogenesis. Cancer Biotherapy & Radiopharmaceuticals 2009, 24(6):637–647.
Fonsatti E, Altomonte M, Nicotra MR, Natali PG,
Maio M: Endoglin (CD105): A powerful therapeutic
target on tumor-associated angiogenetic blood vessels.
Oncogene 2003, 22(42):6557–6563.
Khemtong C, Kessinger CW, Ren J, Bey EA, Yang SG, Guthi JS, Boothman DA, Sherry AD, Gao J: In vivo
off-resonance saturation magnetic resonance imaging
of alphavbeta3-targeted superparamagnetic nanoparticles. Cancer Research 2009, 69(4):1651–1658.
Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A: Tumor endothelial markers as a target in cancer. Expert opinion on therapeutic targets 2012, 16(12):1215–1225.
Sasaroli D, Gimotty PA, Pathak HB, Hammond R,
Kougioumtzidou E, Katsaros D, Buckanovich R,
Devarajan K, Sandaltzopoulos R, Godwin AK et al: Novel
surface targets and serum biomarkers from the ovarian
cancer vasculature. Cancer Biology & Therapy 2011,
(3):169–180.
Shokeen M, Anderson CJ: Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Accounts of Chemical Research 2009, 42(7):832–841.
Tucker GC: Integrins: molecular targets in cancer
therapy. Current Oncology Reports 2006, 8(2):96–103.
Ruoslahti E: RGD and other recognition sequences
for integrins. Annual Review of Cell and Developmental
Biology 1996, 12:697–715.
Garmy-Susini B, Varner JA: Roles of integrins in
tumor angiogenesis and lymphangiogenesis. Lymphatic
Research and Biology 2008, 6(3–4):155–163.
Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 2002, 110(6):673–687.
Takagi J, Petre BM, Walz T, Springer TA: Global
conformational rearrangements in integrin extracellular
domains in outside-in and inside-out signaling.
Cell 2002, 110(5):599–511.
Shattil SJ, Kim C, Ginsberg MH: The final steps of
integrin activation: The end game. Nature Reviews
Molecular Cell Biology 2010, 11(4):288–300.
Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS,
Ginsberg MH, Shattil SJ: SRC kinase activation by direct
interaction with the integrin beta cytoplasmic domain.
Proceedings of the National Academy of Sciences of the
United States of America 2003, 100(23):13298–13302.
Arregui CO, Balsamo J, Lilien J: Impaired integrinmediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. The Journal of Cell Biology 1998, 143(3):861–873.
Hangan-Steinman D, Ho WC, Shenoy P, Chan BM,
Morris VL: Differences in phosphatase modulation
of alpha4beta1 and alpha5beta1 integrin-mediated
adhesion and migration of B16F1 cells. Biochemistry
and cell biology = Biochimie et biologie cellulaire 1999,
(5):409–420.
Goel HL, Fornaro M, Moro L, Teider N, Rhim JS, King
M, Languino LR: Selective modulation of type 1 insulinlike
growth factor receptor signaling and functions
by beta1 integrins. The Journal of Cell Biology 2004,
(3):407–418.
Walker JL, Fournier AK, Assoian RK: Regulation of
growth factor signaling and cell cycle progression by
cell adhesion and adhesion-dependent changes in
cellular tension. Cytokine & Growth Factor Reviews 2005,
(4–5):395–405.
Brooks PC, Clark RA, Cheresh DA: Requirement of
vascular integrin alpha v beta 3 for angiogenesis.
Science (New York, NY) 1994, 264(5158):569–571.
Gladson CL: Expression of integrin alpha v beta 3 in
small blood vessels of glioblastoma tumors. Journal of
neuropathology and experimental neurology 1996, 55(11): 1143–1149.
Drake CJ, Cheresh DA, Little CD: An antagonist of
integrin alpha v beta 3 prevents maturation of blood
vessels during embryonic neovascularization. Journal of
Cell Science 1995, 108 (Pt7):2655– 2661.
Friedlander M, Brooks PC, Shaffer RW, Kincaid CM,
Varner JA, Cheresh DA: Definition of two angiogenic
pathways by distinct alpha v integrins. Science (New York, NY) 1995, 270(5241):1500–1502.
Sheldrake HM, Patterson LH: Function and antagonism of beta3 integrins in the development of cancer therapy. Current
Cancer Drug Targets 2009, 9(4):519–540.
Ruoslahti E, Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science (New York, NY)
, 238(4826):491–497.
Temming K, Schiffelers RM, Molema G, Kok RJ:
RGDbased strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug resistance updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy 2005, 8(6):381–402.
Liu S: Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor
imaging. Molecular pharmaceutics 2006, 3(5):472–487.
Bergelson JM, Shepley MP, Chan BM, Hemler ME,
Finberg RW: Identification of the integrin VLA-2 as a
receptor for echovirus 1. Science (New York, NY) 1992,
(5052):1718–1720.
Leininger E, Roberts M, Kenimer JG, Charles IG,
Fairweather N, Novotny P, Brennan MJ: Pertactin, an Arg-
Gly-Asp-containing Bordetella pertussis surface protein
that promotes adherence of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 1991, 88(2):345–349.
Calvete JJ: Structure-function correlations of snake
venom disintegrins. Current Pharmaceutical Design 2005, 11(7):829–835.
Marcinkiewicz C: Functional characteristic of snake
venom disintegrins: Potential therapeutic implication.
Current Pharmaceutical Design 2005, 11(7):815–827.
Kim JW, Lee HS: Tumor targeting by doxorubicin-
RGD-4C peptide conjugate in an orthotopic mouse
hepatoma model. International Journal of Molecular
Medicine 2004, 14(4):529–535.
Grunhagen DJ, Brunstein F, ten Hagen TL, van Geel AN, de Wilt JH, Eggermont AM: TNF-based isolated limb
perfusion: a decade of experience with antivascular
therapy in the management of locally advanced extremity soft tissue sarcomas. Cancer treatment and research 2004, 120:65–79.
Chen CW, Yeh MK, Shiau CY, Chiang CH, Lu DW:
Efficient downregulation of VEGF in retinal
pigment epithelial cells by integrin ligand-labeled
liposome-mediated siRNA delivery. International Journal
of Nanomedicine 2013, 8:2613–2627.
Wu C, Gong F, Pang P, Shen M, Zhu K, Cheng D, Liu Z, Shan H: An RGD-modified MRI-visible polymeric
vector for targeted siRNA delivery to hepatocellular
carcinoma in nude mice. PLoS One 2013, 8(6):e66416.
Sun Y, Zhu X, Peng J, Li F: Core-shell lanthanide
upconversion nanophosphors as four-modal probes
for tumor angiogenesis imaging. ACS Nano 2013,
(12):11290–11300.
Lim EK, Kim B, Choi Y, Ro Y, Cho EJ, Lee JH, Ryu SH,
Suh JS, Haam S, Huh YM: Aptamer-conjugated magnetic
nanoparticles enable efficient targeted detection of
integrin alphavbeta3 via magnetic resonance imaging.
Journal of biomedical materials research Part A 2013.
Maeda H, Sawa T, Konno T: Mechanism of tumortargeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release: Official Journal of the Controlled Release Society 2001, 74(1–3):47–61.
Ahn KY, Ko HK, Lee BR, Lee EJ, Lee JH, Byun Y,
Kwon IC, Kim K, Lee J: Engineered protein nanoparticles
for in vivo tumor detection. Biomaterials 2014,
(24):6422–6429.
Schmieder AH, Caruthers SD, Zhang H, Williams TA,
Robertson JD, Wickline SA, Lanza GM: Three-dimensional
MR mapping of angiogenesis with alpha5beta1(alpha
nu beta3)-targeted theranostic nanoparticles in the
MDA-MB-435 xenograft mouse model. FASEB Journal:
Official Publication of the Federation of American Societies for Experimental Biology 2008, 22(12):4179–4189.
Kessinger CW TO, Khemtong C, Huang G, Takahashi M, Gao J: Investigation of In Vivo Targeting Kinetics of
αvβ3-Specific Superparamagnetic Nanoprobes by
Time-Resolved MRI. Theranostics 2011(1):263–273.
Swain M, Thirupathi R, Krishnarjuna B, Eaton EM,
Kibbey MM, Rosenzweig SA, Atreya HS: Spontaneous
and reversible self-assembly of a polypeptide fragment
of insulin-like growth factor binding protein-2 into
fluorescent nanotubular structures. Chemical Communications (Cambridge, England) 2010, 46(2):216–218.
Li ZB, Chen K, Chen X: (68)Ga-labeled multimeric
RGD peptides for microPET imaging of integrin
alpha(v)beta (3) expression. European Journal of Nuclear Medicine and Molecular Imaging 2008, 35(6):1100–1108.
Mammen M, Choi S-K, Whitesides GM: Polyvalent
Interactions in Biological Systems: Implications for
Design and Use of Multivalent Ligands and Inhibitors.
Angewandte Chemie International Edition 1998, 37(20):
–2794.
Ye Y, Bloch S, Xu B, Achilefu S: Design, synthesis, and evaluation of near infrared fluorescent multimeric
RGD peptides for targeting tumors. J Med Chem 2006,
(7):2268–2275.
Kai Chen JX, Hengyi Xu, Deepak Beher, Mark Michalski, Sandip Biswal, Andrew Wang and Xiaoyuan Chen: Triblock Copolymer Coated Iron Oxide Nanoparticle Conjugate for Tumor Integrin Targeting. Biomaterials 2009, 30(36):6912–6919.
Jarzyna PA, Deddens LH, Kann BH, Ramachandran S, Calcagno C, Chen W, Gianella A, Dijkhuizen RM, Griffioen AW, Fayad ZA et al: Tumor angiogenesis phenotyping by nanoparticle-facilitated magnetic resonance and nearinfrared fluorescence molecular imaging. Neoplasia (New York, NY) 2012, 14(10):964–973.
Refbacks
- There are currently no refbacks.